方程x2+2mx+1=0有兩個(gè)不相等的負(fù)根,求實(shí)數(shù)m的取值范圍.
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專(zhuān)題:函數(shù)思想,數(shù)形結(jié)合法
分析:構(gòu)造函數(shù)f(x)=x2+2mx+1,運(yùn)用二次函數(shù)圖象在x軸負(fù)半軸有兩個(gè)不同的交點(diǎn),
確定關(guān)于m的不等式組條件,即可解出實(shí)數(shù)m的取值范圍
解答: 解:構(gòu)造函數(shù)f(x)=x2+2mx+1
∵方程x2+2mx+1=0有兩個(gè)不相等的負(fù)根
∴函數(shù)f(x)=x2+2mx+1圖象與x軸負(fù)半軸有兩個(gè)不同的交點(diǎn)
∴滿(mǎn)足的條件為
△=4m2-4>0
-m<0
f(0)=1>0
,即
m>1或m<-1
m>0

∴實(shí)數(shù)m的取值范圍m>1
故實(shí)數(shù)m的取值范圍(1,+∞)
點(diǎn)評(píng):本題考察了二次函數(shù)的圖象與方程的根、函數(shù)的零點(diǎn)關(guān)系,結(jié)合函數(shù)圖象就能夠得出不等式組,再解不等式組即可.本題也可以運(yùn)用分離參數(shù)2m=(-x)+(-
1
x
),運(yùn)用y=2m與y=(-x)+(-
1
x
)兩個(gè)函數(shù)圖象的交點(diǎn)的方法解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x∈R|
x-4
x+1
≤0},B={x∈R|(x-2a)(x-a2-1)<0}.若A∩B=∅,則實(shí)數(shù)a的取值范圍是( 。
A、(2,+∞)
B、[2,+∞)
C、{1}∪[2,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-2sin2x+2
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)將f(x)圖象向右平移
π
12
個(gè)單位,再將周期擴(kuò)大為原來(lái)的2倍,得到函數(shù)g(x)的圖象,若方程g(x)-a=0在x∈[
π
2
,2π]上有且只有一個(gè)實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)(2
1
4
 
1
2
-(-9.6)0-(3
3
8
 -
2
3
+(1.5)-2;
(2)
1
2
lg
32
49
-2lg2+
1
2
lg(5×49).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知100m=5,10n=2,
(1)求2m+n的值.
(2)x1、x2、…x2013均為正實(shí)數(shù),若函數(shù)f(x)=logax(a>0且a≠1)且f(x1x2…x2013)=2m+n,求f(x12)+f(x22)+…+f(x20132)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系中有A(3,4),B(0,1),C(3,-2),D(3-2
2
,0)四點(diǎn),
(1)試說(shuō)明四點(diǎn)在同一個(gè)圓上,并給出圓的方程;
(2)若(1)中的圓與直線(xiàn)x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+mx-m
(1)若函數(shù)f(x)<0對(duì)任意x∈R都成立,求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)在[-2,2]上的最大值為3,求實(shí)數(shù)m的值;
(3)是否存在整數(shù)a,b,使得不等式a≤f(x)≤b的解集恰好是[a,b],若存在,求出滿(mǎn)足要求的所有a,b的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2008年8月18日,在北京奧運(yùn)會(huì)田徑男子跳遠(yuǎn)決賽中,巴拿馬選手薩拉迪諾-阿蘭達(dá)以8米34的成績(jī)獲得冠軍.但是你知道嗎:世界田徑史上,1968年墨西哥奧運(yùn)會(huì),美國(guó)選手鮑勃•比蒙第一次試跳跳出了8.90米.他的這一成績(jī),超過(guò)當(dāng)時(shí)世界紀(jì)錄整整55厘米.直到23年后,鮑威爾才終于突破了這項(xiàng)驚人的紀(jì)錄.因?yàn)殚L(zhǎng)達(dá)23年無(wú)人能破此紀(jì)錄,比蒙的這一跳甚至被田徑史上冠以“比蒙障礙”的名稱(chēng).直到1991年在東京的世錦賽上,邁克•鮑威爾才以8.95米的成績(jī)打破了這個(gè)著名的“比蒙障礙”.比蒙跳躍時(shí)高度的變化大至可用函數(shù):h(t)=-5t2+5t(0≤t≤1)表示,
(1)畫(huà)出函數(shù)圖象;
(2)求他跳的最大高度;
(3)求他騰空在0.8米以上的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,集合A={-3,a2,a-1},B={a-3,2a-1,a2+1},如果A∩B={-3},求A∪B.

查看答案和解析>>

同步練習(xí)冊(cè)答案