【題目】某商場(chǎng)營(yíng)銷人員進(jìn)行某商品市場(chǎng)營(yíng)銷調(diào)查發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品當(dāng)天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過(guò)試點(diǎn)統(tǒng)計(jì)得到以下表:
反饋點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐芬惶熹N量(百件)與該天返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品當(dāng)天銷量;
(2)若節(jié)日期間營(yíng)銷部對(duì)商品進(jìn)行新一輪調(diào)整.已知某地?cái)M購(gòu)買該商品的消費(fèi)群體十分龐大,經(jīng)過(guò)營(yíng)銷部調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
返還點(diǎn)數(shù)預(yù)期值區(qū)間(百分比) | ||||||
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
將對(duì)返還點(diǎn)數(shù)的心理預(yù)期值在和的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個(gè)區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3名進(jìn)行跟蹤調(diào)查,求抽出的3人中至少有1名“欲望膨脹型”消費(fèi)者的概率.(參考公式及數(shù)據(jù):①回歸方程,其中,;②.)
【答案】(1),返回6個(gè)點(diǎn)時(shí)該商品每天銷量約為2百件;(2)(i),中位數(shù)的估計(jì)值為,(ii)見(jiàn)解析
【解析】
(1)求出變量的平均數(shù),求出最小二乘法所需要的數(shù)據(jù),可得線性回歸方程的系數(shù),再根據(jù)樣本中心點(diǎn)一定在線性回歸方程上,求出的值,寫出線性回歸方程; 代入線性回歸方程求出對(duì)應(yīng)的的值,即可預(yù)測(cè)返回6個(gè)點(diǎn)時(shí)該商品每天銷量;(2)利用分層抽樣方法求得“欲望膨脹型”消費(fèi)者與 “欲望緊縮型”消費(fèi)者中抽取的人數(shù),利用列舉法得到所有的抽樣情況共20種,其中至少有1名“欲望膨脹型”消費(fèi)者的情況有16種,利用古典概型概率公式可得結(jié)果.
(1)易知,
,,
,
則y關(guān)于x的線性回歸方程為,
當(dāng)時(shí),,即返回6個(gè)點(diǎn)時(shí)該商品每天銷量約為2百件.
(2)設(shè)從“欲望膨脹型”消費(fèi)者中抽取人,從“欲望緊縮型”消費(fèi)者中抽取人,
由分層抽樣的定義可知,解得,
在抽取的6人中,2名“欲望膨脹型”消費(fèi)者分別記為,4名“欲望緊縮型”消費(fèi)者分別記為,則所有的抽樣情況如下:
共20種,其中至少有1名“欲望膨脹型”消費(fèi)者的情況有16種,記事件A為“抽出的3人中至少有1名‘欲望膨脹型’消費(fèi)者”,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果底面是菱形的直棱柱(側(cè)棱與底面垂直的棱柱)的所有棱長(zhǎng)都相等,,E,M,N分別為的中點(diǎn),現(xiàn)有下列四個(gè)結(jié)論:①平面②③平面④異面真線與MN所成的角的余弦值為,其中正確結(jié)論的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程為:,為參數(shù)點(diǎn)的極坐標(biāo)為,曲線C的極坐標(biāo)方程為.
Ⅰ試將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并求曲線C的焦點(diǎn)在直角坐標(biāo)系下的坐標(biāo);
Ⅱ設(shè)直線l與曲線C相交于兩點(diǎn)A,B,點(diǎn)M為AB的中點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開(kāi)展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是
A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時(shí)間至少80分鐘
B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高
C. 這40名工人完成任務(wù)所需時(shí)間的中位數(shù)為80
D. 無(wú)論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時(shí)間都是80分鐘.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過(guò)點(diǎn),焦點(diǎn),圓O的直徑為.
(1)求橢圓C及圓O的方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P.
①若直線l與橢圓C有且只有一個(gè)公共點(diǎn),求點(diǎn)P的坐標(biāo);
②直線l與橢圓C交于兩點(diǎn).若的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】漢字聽(tīng)寫大會(huì)不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬(wàn)名市民進(jìn)行了漢字聽(tīng)寫測(cè)試現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽(tīng)寫測(cè)試情況,發(fā)現(xiàn)被測(cè)試市民正確書寫漢字的個(gè)數(shù)全部在160到184之間,將測(cè)試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;
試估計(jì)該市市民正確書寫漢字的個(gè)數(shù)的平均數(shù)與中位數(shù);
已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點(diǎn)M,N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P是橢圓上一點(diǎn),M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com