(本題9分)函數(shù)
是定義在
上的奇函數(shù),當(dāng)
時
且
。
(Ⅰ)求
的值;
(Ⅱ)求
的解析式。
試題分析:(Ⅰ)因為
是奇函數(shù),所以
, 2分
又
。 2分
(Ⅱ)設(shè)
,則
1分
又因為
是奇函數(shù),
所以
。 3分
所以
。 1分
點評:利用函數(shù)的奇偶性求函數(shù)的解析式,此類問題的一般做法是:①“求誰設(shè)誰”?即在哪個區(qū)間求解析式,x就設(shè)在哪個區(qū)間內(nèi);②要利用已知區(qū)間的解析式進(jìn)行代入;③利用f(x)的奇偶性寫出-f(x)或f(-x),從而解出f(x)。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
我市有甲、乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(nèi)(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準(zhǔn)備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設(shè)在甲家租一張球臺開展活動
小時的收費為
元
,在乙家租一張球臺開展活動
小時的收費為
元
,試求
和
。
(2)問:小張選擇哪家比較合算?說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)已知函數(shù)
的一系列對應(yīng)值如下表:
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)
的解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)
周期為
,求
在區(qū)間
上的最大、最小值及對應(yīng)的
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)某民營企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤y與投資額x成正比,其關(guān)系如圖1所示;B產(chǎn)品的利潤y與投資額x的算術(shù)平方根成正比,其關(guān)系如圖2所示(利潤與投資額的單位均為萬元). (1)分別將A、B兩種產(chǎn)品的利潤表示為投資額的函數(shù)關(guān)系式;(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
方程x
3-6x
2+9x-10=0的實根個數(shù)是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
給定映射f:
,在映射f下,(3,1)的原像為( )
A.(1,3) | B.(5,5) | C.(3,1) | D.(1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)某單位用2 160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2 000平方米的樓房,經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費用為560+48x(單位:元).為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
,在
上恒有
,則實數(shù)
的范圍是( )
查看答案和解析>>