已知命題:p:f(x-1)是奇函數(shù);q:f(.下列函數(shù):
①f(x)=,
②f(x)=cos,
③f(x)=2x-1
中能使p,q都成立的是    .(寫出符合要求的所有函數(shù)的序號).
【答案】分析:①由f(x)=,知命題:p:f(x-1)是奇函數(shù),命題q:f(都成立;
②由f(x)=cos,知命題:p:f(x-1)是奇函數(shù),命題q:f(都成立;
③由f(x)=2x-1,知命題:p:f(x-1)是奇函數(shù),命題q:f(都不成立.
解答:解:①∵f(x)=,
∴f(x-1)==是奇函數(shù),
f()==,
∴命題:p:f(x-1)是奇函數(shù),命題q:f(都成立;
②∵f(x)=cos,
∴f(x-1)=cos=sin是奇函數(shù),
f()=cos=,
∴命題:p:f(x-1)是奇函數(shù),命題q:f(都成立;
③∵f(x)=2x-1,
∴f(x-1)=2x-1-1不是奇函數(shù),
f()=-1=1<
∴命題:p:f(x-1)是奇函數(shù),命題q:f(都不成立.
故答案為:①②.
點(diǎn)評:本題考查命題的真假判斷和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知真命題:“函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對稱圖形”的充要條件為“函數(shù)y=f(x+a)-b 是奇函數(shù)”.
(1)將函數(shù)g(x)=x3-3x2的圖象向左平移1個(gè)單位,再向上平移2個(gè)單位,求此時(shí)圖象對應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)g(x)圖象對稱中心的坐標(biāo);
(2)求函數(shù)h(x)=log2
2x4-x
 圖象對稱中心的坐標(biāo);
(3)已知命題:“函數(shù) y=f(x)的圖象關(guān)于某直線成軸對稱圖象”的充要條件為“存在實(shí)數(shù)a和b,使得函數(shù)y=f(x+a)-b 是偶函數(shù)”.判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設(shè)的真命題對它進(jìn)行修改,使之成為真命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:p:f(x-1)是奇函數(shù);q:f(
1
2
1
2
.下列函數(shù):
①f(x)=
2
x+1
,
②f(x)=cos
πx
2
,
③f(x)=2x-1
中能使p,q都成立的是
①②
①②
.(寫出符合要求的所有函數(shù)的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市春季高考數(shù)學(xué)試卷(解析版) 題型:解答題

已知真命題:“函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對稱圖形”的充要條件為“函數(shù)y=f(x+a)-b 是奇函數(shù)”.
(1)將函數(shù)g(x)=x3-3x2的圖象向左平移1個(gè)單位,再向上平移2個(gè)單位,求此時(shí)圖象對應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)g(x)圖象對稱中心的坐標(biāo);
(2)求函數(shù)h(x)= 圖象對稱中心的坐標(biāo);
(3)已知命題:“函數(shù) y=f(x)的圖象關(guān)于某直線成軸對稱圖象”的充要條件為“存在實(shí)數(shù)a和b,使得函數(shù)y=f(x+a)-b 是偶函數(shù)”.判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設(shè)的真命題對它進(jìn)行修改,使之成為真命題(不必證明).
[解](1)
(2)
(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市汶上一中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知命題:p:f(x-1)是奇函數(shù);q:f(.下列函數(shù):
①f(x)=,
②f(x)=cos
③f(x)=2x-1
中能使p,q都成立的是    .(寫出符合要求的所有函數(shù)的序號).

查看答案和解析>>

同步練習(xí)冊答案