已知定義域為R的偶函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f(m•n)=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關于x的不等式[f(
kx+2
2
x2+4
)]2≥2
,其中k∈(-1,1).
(1)由題意知對任意x∈R,f(x)>0,
又對任意m,n∈[0,+∞),都有f(mn)=[f(m)]n,
則令m=n=0則f(0)=[f(0)]0=1,…(2分)
令m=1,n=2,可得f(2)=f(1×2)=[f(1)]2=4,
∴f(1)=2,根據(jù)偶函數(shù)的性質(zhì)可知f(-1)=2.…(6分)
(2)[f(
kx+2
2
x2+4
)]2≥2?f(
kx+2
x2+4
)≥f(±1)
…(9分)
∵f(x)為偶函數(shù),且在[0,+∞)上單調(diào)遞增,∴|
kx+2
x2+4
|≥1
,
即(k2-1)x2+4kx≥0…(11分)
當-1<k<0時,原不等式的解集為[
4k
1-k2
,0]

當k=0時,原不等式的解集為{0};
當0<k<1時,原不等式的解集為[0,
4k
1-k2
]
.…(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義域為R的偶函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f(m•n)=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關于x的不等式[f(
kx+2
2
x2+4
)]2≥2
,其中k∈(-1,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淮北一模)已知定義域為R的函數(shù)y=f(x)在(1,+∞)上是增函數(shù),且函數(shù)y=f(x+1)是偶函數(shù),那么( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為R的偶函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f(m•n)=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關于x的不等式數(shù)學公式,其中k∈(-1,1).

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省“9+4”聯(lián)合體高一(下)期中數(shù)學試卷(解析版) 題型:解答題

已知定義域為R的偶函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增,其圖象均在x軸上方,對任意m,n∈[0,+∞),都有f=[f(m)]n,且f(2)=4.
(1)求f(0)、f(-1)的值;
(2)解關于x的不等式,其中k∈(-1,1).

查看答案和解析>>

同步練習冊答案