已知f(x)=9x-2×3x+4,x∈[-1,2].
(1)設(shè)t=3x,x∈[-1,2],求t的最大值與最小值;
(2)求f(x)的最大值與最小值.

解:(1)設(shè)t=3x,∵x∈[-1,2],函數(shù)t=3x 在[-1,2]上是增函數(shù),故有 ≤t≤9,故t的最大值為9,t的最小值為
(2)由f(x)=9x-2×3x+4=t2-2t+4=(t-1)2+3,可得此二次函數(shù)的對稱軸為 t=1,且 ≤t≤9,
故當t=1時,函數(shù)f(x)有最小值為3,
當t=9時,函數(shù)f(x)有最大值為 67.
分析:(1)設(shè)t=3x,由 x∈[-1,2],且函數(shù)t=3x 在[-1,2]上是增函數(shù),故有 ≤t≤9,由此求得t的最大值和最小值.
(2)由f(x)=t2-2t+4=(t-1)2+3,可得此二次函數(shù)的對稱軸為 t=1,且 ≤t≤9,由此求得f(x)的最大值與最小值.
點評:本題主要考查指數(shù)函數(shù)的綜合題,求二次函數(shù)在閉區(qū)間上的最值,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=9x-2×3x+4,x∈[-1,2].
(1)設(shè)t=3x,x∈[-1,2],求t的最大值與最小值;
(2)求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=9x-2×3x+4,x∈[-1,2],求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知fx)=9x+1,gx)=x2,則fgx)]=__________,gfx)]=__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f(x)=9x-2×3x+4,x∈[-1,2],求f(x)的最大值與最小值.

查看答案和解析>>

同步練習冊答案