某班班會準備從甲、乙等7名學生中選4名學生發(fā)言,要求甲、乙至少有一人參加,那么不同的發(fā)言順序的種數(shù)為
 
(用數(shù)字作答)
考點:排列、組合及簡單計數(shù)問題
專題:排列組合
分析:根據(jù)題意,分2種情況討論,①只有甲乙其中一人參加,②甲乙兩人都參加,由排列、組合計算可得其符合條件的情況數(shù)目,由加法原理計算可得答案.
解答: 解:根據(jù)題意,分2種情況討論,
若只有甲乙其中一人參加,有C21•C53•A44=480種情況;
若甲乙兩人都參加,有C22•C52•A44=240種情況,
則不同的發(fā)言順序種數(shù)480+240=720種,
故答案為:720
點評:本題考查排列、組合的實際應用,正確分類是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三棱錐A-BCD中,AB=AC=BD=CD=2,BC=2AD=2
2
,則直線AD與底面BCD所成角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x1,x2是方程x2-mx+1-m2=0(m∈R)的實根,則x12+x22的最小值是( 。
A、-2
B、
2
5
C、0
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b均為正數(shù),
1
a
+
4
b
=1
,則使a+b≥c恒成立的實數(shù)c的取值范圍是( 。
A、c≤9B、c≥9
C、c≤10D、c≥10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點A、B的坐標分別為(-a,0),(a,0),(a>0).直線AM,BM相交于點M,若它們的斜率之積是m(m≠0),求點M的軌跡方程,并指出是何種曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
滿足|
b
|=2,
a
b
的夾角為60°,則
b
a
上的投影是( 。
A、1B、2C、3D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式x2-ax+b<0.
(Ⅰ)若a=3,b=2,求已知不等式的解集;
(Ⅱ)若已知不等式的解集為{x|1<x<5},求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(1,2),
b
=(-2,x),若
a
b
,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+(a-1)x2是奇函數(shù),則函數(shù)g(x)=
x-x2
x-a
的定義域是
 

查看答案和解析>>

同步練習冊答案