定義F(a,b)=
12
(a+b+|a-b
|),若f(x)=x2,g(x)=-x+2,則 F(f(x),g(x))的最小值為
1
1
分析:當(dāng)f(x)>g(x)時(shí),F(xiàn)(f(x),g(x))=x2,當(dāng)f(x)<g(x)時(shí),F(xiàn)(f(x),g(x))=-x+2,故可求.
解答:解:由題意,當(dāng)f(x)>g(x)時(shí),F(xiàn)(f(x),g(x))=x2
當(dāng)f(x)<g(x)時(shí),F(xiàn)(f(x),g(x))=-x+2,
又f(x)=g(x)時(shí),x2+x-2=0的根為x1=-2,x2=1,則可知x=1時(shí),有最小值為1,
故答案為1.
點(diǎn)評:本題主要考查分段函數(shù),理解分段函數(shù)的定義是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,2
3
sinx),
b
=(2cosx,sinx)
,定義f(x)=
a•
b
3

(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)y=f(x+θ)(0<θ<π)為偶函數(shù),求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)命題
①定義在R上的函數(shù)f(x)滿足f(2)<f(3),則函數(shù)f(x)在R上不是單調(diào)減函數(shù).
②若A={1,4},B={1,-1,2,-2},f:x→x7的平方根.則f是A到B的映射.
③將函數(shù)f(x)=2-x的圖象向右平移兩個(gè)單位向下平移一個(gè)單位后,得到的圖象對應(yīng)的函數(shù)為g(x)=2-x-2-1
④關(guān)于x13的方程|2x-1|=a(a為常數(shù)),當(dāng)a>0時(shí)方程必有兩個(gè)不同的實(shí)數(shù)解.
其中正確的命題序號為
①②
①②
(以序號作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江一模)定義區(qū)間(a,b),[a,b),(a,b][a,b]的長度均為d=b-a,多個(gè)區(qū)間并集的長度為各區(qū)間長度之和,例如(1,2)∪(3,5)的長度為d=(2-1)+(5-3)=3,用[x]表示不超過x的最大整數(shù),記<x>=x-[x],其中x∈R.設(shè)f(x)=[x]•<x>,g(x)=2x-[x]-2,若d1,d2,d3分別表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的長度,則當(dāng)0≤x≤2012時(shí),有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•眉山一模)定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果?ξ∈[a,b],使得f(b)-f(a)=f'(ξ)(b-a),則稱ξ為區(qū)間[a,b]上的“中值點(diǎn)”.下列函數(shù):
①f(x)=3x+2;   ②f(x)=x2-x+1;   ③f(x)=ln(x+1);   ④f(x)=(x-
12
)3

在區(qū)間[0,1]上“中值點(diǎn)”多于一個(gè)的函數(shù)序號為
①④
①④
.(寫出所有滿足條件的函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性且存在區(qū)間[a,b]⊆D(其中a<b)使當(dāng)x∈[a,b]時(shí),f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的“正函數(shù)”,區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
(1)已知函數(shù)f(x)=x3是正函數(shù),試求f(x)的所有等域區(qū)間;
(2)若g(x)=
x+2
+k
是正函數(shù),試求實(shí)數(shù)k的取值范圍;
(3)是否存在實(shí)數(shù)a,b(a<b<1)使得函數(shù)f(x)=|1-
1
x
|
是[a,b]上的“正函數(shù)”?若存在,求出區(qū)間[a,b],若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案