經(jīng)過空間任意三點作平面?zhèn)數(shù)為
 
考點:平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:利用平面的基本性質(zhì)求解.
解答: 解:經(jīng)過空間不共線的三點,有且只有一個平面,
紅過空間共線的三點有無數(shù)個平面,
∴經(jīng)過空間任意三點作平面?zhèn)數(shù)為一個或無數(shù)個.
故答案為:一個或無數(shù)個.
點評:本題考查滿足條件的平面?zhèn)數(shù)的判斷,是基礎(chǔ)題,解題時要注意平面的基本性質(zhì)的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=2sin(2ωx-
π
6
)+λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(
π
4
,0),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了4次試驗.收集數(shù)據(jù)如下:
零件個數(shù)x(個) 1 2 3 4
加工時間y(小時) 2 3 5 8
(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
;
(Ⅲ)現(xiàn)需生產(chǎn)20件此零件,預(yù)測需用多長時間?
(注:用最小二乘法求線性回歸方程系數(shù)公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正項數(shù)列{an}滿足a1=1,a2=2,又數(shù)列{
anan+1
}是以
2
2
為公比的等比數(shù)列,則使得不等式
1
a1
+
1
a2
+…+
1
a2n+1
<1280成立的最大整數(shù)n為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=(
1
3
x是指數(shù)函數(shù)(小前提),所以函數(shù)y=(
1
3
x是增函數(shù)(結(jié)論)”,上面推理的錯誤在于
 
錯誤導(dǎo)致結(jié)論錯.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=ex在x=1處的切線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD中,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點,則在△ADE翻轉(zhuǎn)過程中,正確的命題是
 

①MB總是平行平面A1DE;
②|BM|是定值;
③點M在圓上運動.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
n(n+1)
的前n項和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(1-x)n=a0+a1x+a2x2+…+anxn,若5a1+2a2=0,則a0-a1+a2-a3+…+(-1)nan=
 

查看答案和解析>>

同步練習冊答案