18.一條光線從點(diǎn)(-2,-3)射出,經(jīng)y軸反射后與圓(x+3)2+(y-2)2=1相切,求入射光線所在直線方程.

分析 點(diǎn)A(-2,-3)關(guān)于y軸的對稱點(diǎn)為A′(2,-3),可設(shè)反射光線所在直線的方程為:y+3=k(x-2),利用直線與圓相切的性質(zhì)即可得出.

解答 解:點(diǎn)A(-2,-3)關(guān)于y軸的對稱點(diǎn)為A′(2,-3),
故可設(shè)反射光線所在直線的方程為:y+3=k(x-2),化為kx-y-2k-3=0.
∵反射光線與圓(x+3)2+(y-2)2=1相切,
∴圓心(-3,2)到直線的距離d=$\frac{|-3k-2-2k-3|}{\sqrt{{k}^{2}+1}}$=1,
化為24k2+50k+24=0,
∴k=-$\frac{4}{3}$,或k=-$\frac{3}{4}$.
故入射光線所在直線方程為:-$\frac{4}{3}$x-y-$\frac{1}{3}$=0或-$\frac{3}{4}$x-y-$\frac{3}{2}$=0,
即4x+3y+1=0或3x+4y+6=0.

點(diǎn)評 本題考查了反射光線的性質(zhì)、直線與圓相切的性質(zhì)、點(diǎn)到直線的距離公式、點(diǎn)斜式、對稱點(diǎn),考查了計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+6,x≥0}\\{x+6,x<0}\end{array}\right.$,則不等式f(x)≥f(1)的解集是(  )
A.[-3,1]∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,不是偶函數(shù)的是( 。
A.f(x)=x3B.f(x)=x2+1C.$f(x)=\frac{1}{x^2}$D.f(x)=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的焦點(diǎn)坐標(biāo)是(±3,0),長軸長=10,短軸長=8,焦距=6,頂點(diǎn)坐標(biāo)是(±5,0);(0,±4),離心率e=$\frac{3}{5}$,準(zhǔn)線方程是x=$±\frac{25}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)P和Q是兩個集合,定義集合P+Q={x∈P或x∈Q且∉P∩Q},若P={x|x2-3x-4≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于(  )
A.[-1,4]B.(-∞,-1]∪[4,+∞)C.(-3,5)D.(-∞,-3)∪[-1,4]∪(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若用列舉法表示集合A={x|x<5,x∈N*},則集合A={1,2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知定義域為R的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函數(shù),則a+b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)是定義在R上的奇函數(shù),f(-4)=-1,f(x)的導(dǎo)函數(shù)f′(x)≥0,若正數(shù)a,b滿足f(a+2b)≤1,則當(dāng)a+2b取得最大值時,$\frac{1}{a}+\frac{2}$的最小值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線l過圓x2+y2-6y+5=0的圓心,且與直線x+y+5=0平行,則l的方程是(  )
A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0

查看答案和解析>>

同步練習(xí)冊答案