函數(shù)y=loga(2-ax)在[0,1]上是減函數(shù),則a的取值范圍是(  )
A、(0,1)B、(0,2)C、(1,2)D、(2,+∞)
分析:a>0?2-ax在[0,1]上是減函數(shù)由復合函數(shù)的單調(diào)性可得a>1,在利用對數(shù)函數(shù)的真數(shù)須大于0可解得a的取值范圍.
解答:解:∵a>0,
∴2-ax在[0,1]上是減函數(shù).
∴y=logau應為增函數(shù),且u=2-ax在[0,1]上應恒大于零.
a>1
2-a>0.

∴1<a<2.
故答案為:C.
點評:本題考查了對數(shù)函數(shù)與其它函數(shù)復合在一起的一新函數(shù)的單調(diào)性,復合函數(shù)的單調(diào)性遵循的原則是同增異減,即單調(diào)性相同復合在一起為增函數(shù),單調(diào)性相反,復合在一起為減函數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、已知實數(shù)a滿足1<a<2,命題p:函數(shù)y=loga(2-ax)在[0,1]上是減函數(shù),命題q:“|x|<1”是“x<a”的充分不必要條件,則下面說法正確的是

①p或q為真命題;②p且q為假命題;③非p且q為真命題;④非p或非q為真命題、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
loga(3x-2)
的定義域 (a>0,且a≠1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=loga(2-ax)在[0,1]上單調(diào)遞減,則實數(shù)a的取值范圍是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=loga(2-ax)(a>0且a≠1)在區(qū)間[0,1]上是減函數(shù),則a∈(1,m),其中m=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=loga(2-x)+1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny-1=0上(mn>0),則
1
m
+
1
n
的最小值為
 

查看答案和解析>>

同步練習冊答案