精英家教網 > 高中數學 > 題目詳情
8.若函數f(x)=$\left\{\begin{array}{l}{x+1,x<1}\\{2x+k,x≥1}\end{array}\right.$為(-∞,+∞)上的增函數,則k的取值范圍是[0,+∞).

分析 根據分段函數的單調性的性質進行求解即可.

解答 解:若f(x)在(-∞,+∞)上為增函數,
則滿足2+k≥1+1,
即k≥0,
故答案為:[0,+∞)

點評 本題主要考查函數單調性的應用,根據函數單調性的性質是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

4.命題:“?x∈R,x2+2ax+2-a=0”;命題q:已知函數f(x)=log2(a-2x)+x-2,f(x)存在零點,命題p∧q為真命題,求參數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.下列說法不正確的有①②③④. 
①若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$的方向相同或 相反;
②若λ$\overrightarrow{a}$=$\overrightarrow{0}$,則λ=0;
③相反向量必不相等;
④若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$,λ∈R且 λ≠0,則$\overrightarrow{a}$∥$\overrightarrow$的充要條件是$\overrightarrow{{e}_{2}}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.若tanx<0,則( 。
A.sinx<0B.cosx<0C.sin2x<0D.cos2x<0

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知向量$\overrightarrow a=(3,1),\overrightarrow b=(1,3),\overrightarrow c=(k,2)$,若$(\overrightarrow a-\overrightarrow c)∥\overrightarrow b$,則k=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.已知$\overrightarrow{e}$是單位向量,向量$\overrightarrow{a}$的模為2,若$\overrightarrow{a}$=λ$\overrightarrow{e}$,則實數λ的值為±2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.某觀察站C與兩燈塔A、B的距離分別為x米和3千米,測得燈塔A在觀察站C的正西方向,燈塔B在觀察站C西偏南30°,若兩燈塔A、B之間的距離恰好為$\sqrt{3}$千米,則x的值為( 。
A.3B.$\sqrt{3}$C.$2\sqrt{3}$D.$\sqrt{3}$或$2\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.在△ABC中,A=60°,AC=2,BC=$\sqrt{3}$,則AB等于1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.已知f(x)=x2-2x+4,g(x)=ax(a>0且a≠1),若對任意的x1∈[1,2],都存在x2∈[-1,2],使得f(x1)<g(x2)成立,則實數a的取值范圍是(0,$\frac{1}{4}$)∪(2,+∞).

查看答案和解析>>

同步練習冊答案