已知a>1,M=
a+1
-
a
,N=
a
-
a-1
,試比較M與N的大。
考點:不等式比較大小
專題:不等式的解法及應(yīng)用
分析:通過作差并利用分子有理化即可得出.
解答: 解:M-N=(
a+1
-
a
)-(
a
-
a-1
)
=
1
a+1
+
a
-
1
a
+
a-1

a+1
+
a
a
+
a-1
>0
,
1
a+1
+
a
1
a
+
a-1
,
∴M<N.
點評:本題考查了“作差法”、分子有理化等基礎(chǔ)知識與方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sin
A
2
=
4
5
,則cos
B+C
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
x
+sin2x的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U={x|x≥2},集合A={y|3≤y<4},集合B={z|2≤z<5},求∁UA∩B,∁UB∪A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=2x+
8
x

(1)求函數(shù)g(x)在[4,8]上的值域;
(2)求函數(shù)g(x)在(-2,0)∪(0,3)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD是等腰梯形,且AB∥CD,O是AB中點,PO⊥平面ABCD,PO=CD=DA=
1
2
AB=4,M是PA中點.
(1)證明:平面PBC∥平面ODM;
(2)求平面PBC與平面PAD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:關(guān)于x的方程x2+2ax+b=0有實數(shù)根,且兩根均小于2的充分但不必要條件是a≥2且|b|≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐B-ACDE中,底面ACDE為直角梯形,CD∥AE,∠BCD=∠ACD=90°,二面角A-CD-B為60°,AE=BC=2,AC=CD=1.
(1)求證:AC⊥BE;
(2)求BD與面ABE所成角的正弦值;
(3)求二面角A-BE-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:①不等式f(x)≤0的解集有且只有一個元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項和為Sn,且Sn=f(n).規(guī)定:各項均不為零的數(shù)列{bn}中,所有滿足bi•bi+1<0的正整數(shù)i的個數(shù)稱為這個數(shù)列{bn}的變號數(shù).若令bn=1-
a
an
(n∈N*),則數(shù)列{bn}的變號數(shù)等于
 

查看答案和解析>>

同步練習(xí)冊答案