【題目】為調(diào)查宜昌一中高二年級男生的身高狀況,現(xiàn)從宜昌一中高二年級中隨機抽取100名男生作為樣本,下圖是樣本的身高頻率分布直方圖(身高單位:cm).
(1)用樣本頻率估計高二男生身高在180cm及以上概率,并根據(jù)圖中數(shù)據(jù)估計宜昌一中高二男生的平均身高;
(2)在該樣本中,求身高在180cm及以上的同學(xué)人數(shù),利用分層抽樣的方法再從身高在180cm及以上的兩組同學(xué)(180~185,185~190)中選出3名同學(xué),應(yīng)該如何選;
(3)在該樣本中,從身高在180cm及以上的同學(xué)中隨機挑選3人,這3人的身高都在185cm及以上的概率有多大?
【答案】(1),;(2)在180cm至185cm一組內(nèi)隨機選2人、在185cm至190cm一組內(nèi)隨機選1人;(3)
【解析】
(1)根據(jù)圖中數(shù)據(jù)直接計算即可
(2)樣本中,180cm至185cm一組頻率為0.1,其人數(shù)為人,185cm至190cm一組頻率為0.05,其人數(shù)為人,然后即可算出答案
(3)分別算出總的個數(shù)和這3人的身高都在185cm及以上的個數(shù),然后相比即可得出答案
(1)樣本中180cm及以上的頻率為,
所以高二男生身高在180cm及以上的概率為;
高二男生平均身高為cm.
(2)樣本中,180cm至185cm一組頻率為0.1,其人數(shù)為人,
185cm至190cm一組頻率為0.05,其人數(shù)為人,
兩組合計共15人,采用分層抽樣選3人,應(yīng)在180cm至185cm一組內(nèi)隨機選2人、
在185cm至190cm一組內(nèi)隨機選1人;
(3)樣本中身高在180cm及以上共15人,
從中隨機抽選3人的所有選法為種,
身高在185cm及以上的人數(shù)為5,
從中隨機抽選3人的所有選法為種,
故身高都在185cm及以上的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示:
(I)求的解析式及對稱中心坐標(biāo);
(Ⅱ)將的圖象向右平移個單位,再將橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個單位,得到函數(shù)的圖象,求函數(shù)在上的單調(diào)區(qū)間及最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分) 已知橢圓經(jīng)過點,離心率為,過點的直線與橢圓交于不同的兩點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種大型醫(yī)療檢查機器生產(chǎn)商,對一次性購買2臺機器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費1000元.某醫(yī)院準(zhǔn)備一次性購買2臺這種機器。現(xiàn)需決策在購買機器時應(yīng)購買哪種延保方案,為此搜集并整理了50臺這種機器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺數(shù) | 5 | 10 | 20 | 15 |
以這50臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率,記X表示這2臺機器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。
(1)求X的分布列;
(2)以所需延保金及維修費用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)時,的取值范圍是.
(1)求的值;
(2)若不等式對恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)有3個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若曲線在點處的切線與直線垂直,求的單調(diào)區(qū)間;
(2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍;
(3)證明:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列橢圓的標(biāo)準(zhǔn)方程:
(1)已知橢圓長軸是短軸的倍,并且過點;
(2)已知橢圓經(jīng)過兩點、.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com