【題目】如圖(1)五邊形中,

,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線(xiàn)段的中點(diǎn),且平面.

(1)求證:平面平面

(2)若四棱柱的體積為,求四面體的體積.

【答案】(1)詳見(jiàn)解析;(2).

【解析】試題分析:

(1)要證兩平面垂直,就要證線(xiàn)面垂直,首先利用已知條件與平面垂直,為此取的中點(diǎn),可證得四邊形為平行四邊形,所以,從而平面,也即

.于是由的中點(diǎn),可得為等邊三角形,

,由,得, ,可得平面平面平面.

(2)利用棱錐體積公式,三棱錐的底面的面積是四棱錐的底面面積的,高為其一半,由體積公式可得結(jié)論.

試題解析:

(1)證明:取的中點(diǎn),連接,則,

,所以,則四邊形為平行四邊形,所以,

平面,

平面

.

的中點(diǎn),可得為等邊三角形,

,∴,∴,

平面平面,

∴平面平面.

(2)解:設(shè)四棱錐的高為,四邊形的面積為,

,

,四面體底面上的高為

所以四面體的體積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,坐標(biāo)平面上一點(diǎn)P滿(mǎn)足: 的周長(zhǎng)為6,記點(diǎn)P的軌跡為.拋物線(xiàn)為焦點(diǎn),頂點(diǎn)為坐標(biāo)原點(diǎn)O.

(Ⅰ)求, 的方程;

(Ⅱ)若過(guò)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),問(wèn)在上且在直線(xiàn)外是否存在一點(diǎn),使直線(xiàn)的斜率依次成等差數(shù)列,若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)在橢圓上, ,過(guò)點(diǎn)的直線(xiàn)與橢圓分別交于兩點(diǎn).

(1)求橢圓的方程及離心率;

(2)若的面積為為坐標(biāo)原點(diǎn),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某印刷廠(chǎng)為了研究印刷單冊(cè)書(shū)籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書(shū)籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表:

印刷冊(cè)數(shù)(千冊(cè))

2

3

4

5

8

單冊(cè)成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).

①完成下表(計(jì)算結(jié)果精確到0.1);

印刷冊(cè)數(shù)(千冊(cè))

2

3

4

5

8

單冊(cè)成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較, 的大小,判斷哪個(gè)模型擬合效果更好.

(2)該書(shū)上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠(chǎng)決定進(jìn)行二次印刷.根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率0.8)或10千冊(cè)(概率0.2),若印刷廠(chǎng)以每?jī)?cè)5元的價(jià)格將書(shū)籍出售給訂貨商,問(wèn)印刷廠(chǎng)二次印刷8千冊(cè)還是10千冊(cè)能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書(shū)的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中直線(xiàn)BC1與平面BB1D1D所成角的余弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),橢圓上任意一個(gè)動(dòng)點(diǎn)M到左焦點(diǎn)F1的距離的最大值 為 +1 (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線(xiàn)L的斜率為k,且過(guò)左焦點(diǎn)F1 , 與橢圓C相交于P、Q兩點(diǎn),若△PQF2的面積為 ,試求k的值及直線(xiàn)L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,P為BC的中點(diǎn),Q為線(xiàn)段CC1上的動(dòng)點(diǎn),過(guò)點(diǎn)A,P,Q的平面截該正方體所得的截面記為S. ①當(dāng) 時(shí),S為四邊形
②截面在底面上投影面積恒為定值
③不存在某個(gè)位置,使得截面S與平面A1BD垂直
④當(dāng) 時(shí),S與C1D1的交點(diǎn)滿(mǎn)足C1R1=
其中正確命題的個(gè)數(shù)為

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 +y2=1的左右焦點(diǎn)分別為F1 , F2 , 直線(xiàn)l過(guò)橢圓的右焦點(diǎn)F2與橢圓交于A(yíng),B 兩點(diǎn), (Ⅰ)當(dāng)直線(xiàn)l的斜率為1,點(diǎn)P為橢圓上的動(dòng)點(diǎn),滿(mǎn)足使得△ABP的面積為 的點(diǎn)P有幾個(gè)?并說(shuō)明理由.
(Ⅱ)△ABF1的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)直線(xiàn)l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意實(shí)數(shù)a,b,c,d,以下四個(gè)命題中的真命題是(
A.若a>b,c≠0則ac>bc
B.若a>b>o,c>d則ac>bd
C.若a>b,則
D.若ac2>bc2則a>b

查看答案和解析>>

同步練習(xí)冊(cè)答案