已知橢圓
x2
4
+y2=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,當(dāng)
PF1
PF2
=0
時(shí),△F1PF2的面積為
1
1
分析:先設(shè)出|PF1|=m,|PF2|=n,利用橢圓的定義求得n+m的值,平方后求得mn和m2+n2的關(guān)系,結(jié)合勾股定理可得答案.
解答:解:設(shè)|PF1|=m,|PF2|=n,
由橢圓的定義可知m+n=4.
因?yàn)?span id="dx75pyn" class="MathJye">
PF1
PF2
=0,
所以m2+n2=(2c)2=4c2=12,
所以nm=2.
因?yàn)?span id="pkiipu4" class="MathJye">
PF1
PF2
=0,
所以△F1PF2的是直角三角形,即SF1F2=
1
2
nm,
所以SF1F2P=1.
故答案為1.
點(diǎn)評(píng):本題主要考查了橢圓的應(yīng)用,橢圓的簡(jiǎn)單性質(zhì)和橢圓的定義.考查了考生對(duì)所學(xué)知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓
x24
+y2=1
的左、右兩個(gè)頂點(diǎn)分別為A,B,直線x=t(-2<t<2)與橢圓相交于M,N兩點(diǎn),經(jīng)過三點(diǎn)A,M,N的圓與經(jīng)過三點(diǎn)B,M,N的圓分別記為圓C1與圓C2
(1)求證:無(wú)論t如何變化,圓C1與圓C2的圓心距是定值;
(2)當(dāng)t變化時(shí),求圓C1與圓C2的面積的和S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+y2=1
,過E(1,0)作兩條直線AB與CD分別交橢圓于A,B,C,D四點(diǎn),已知kABkCD=-
1
4

(1)若AB的中點(diǎn)為M,CD的中點(diǎn)為N,求證:①kOMkON=-
1
4
為定值,并求出該定值;②直線MN過定點(diǎn),并求出該定點(diǎn);
(2)求四邊形ACBD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓
x2
4
+y2=1
,弦AB所在直線方程為:x+2y-2=0,現(xiàn)隨機(jī)向橢圓內(nèi)丟一粒豆子,則豆子落在圖中陰影范圍內(nèi)的概率為
π-2
π-2

(橢圓的面積公式S=π•a•b,其中a是橢圓長(zhǎng)半軸長(zhǎng),b是橢圓短半軸長(zhǎng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽(yáng)區(qū)三模)已知橢圓
x2
4
+y2=1
的焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓上一點(diǎn),且∠F1PF2=90°,則點(diǎn)P的縱坐標(biāo)可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x24
+y2=1
,過點(diǎn)M(-1,0)作直線l交橢圓于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)求AB中點(diǎn)P的軌跡方程;
(2)求△OAB面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案