如圖,在正△ABC中,點(diǎn)D,E分別在邊AC, AB上,且AD=ACAE=AB,BD,CE相交于點(diǎn)F.
(Ⅰ)求證:A,E,F, D四點(diǎn)共圓;
(Ⅱ)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.
(Ⅰ)詳見解析;(Ⅱ) .
【解析】
試題分析:(Ⅰ)根據(jù)圓內(nèi)接四邊形判定定理,只需說明對角互補(bǔ)即可,由已知數(shù)量關(guān)系,可證明,故,所以,所以四點(diǎn)共圓;(Ⅱ)四邊形的外接圓問題 可轉(zhuǎn)化為其中三個(gè)頂點(diǎn)確定的外接圓問題解決,取的中點(diǎn),連接則容易證
,則的外接圓半徑為,也是四邊形的外接圓半徑.
試題解析:(Ⅰ)證明:∵, ∴ , ∵在正中, , ∴,
又∵,, ∴, ∴, 即,所以四點(diǎn)共圓.
(Ⅱ)解:如圖, 取的中點(diǎn),連接,則, ∵, ∴,
∵,∴,又, ∴為正三角形, ∴,即, 所以點(diǎn)是外接圓的圓心,且圓G的半徑為2. 由于四點(diǎn)共圓,即四點(diǎn)共圓,其半徑為.
考點(diǎn):1、三角形全等;2、圓內(nèi)接四邊形判定定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆河南省南陽市一中高三第八次周考理科數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,在正△ABC中,點(diǎn)D,E分別在邊AC, AB上,且AD=AC, AE= AB,BD,CE相交于點(diǎn)F。
(I)求證:A,E,F(xiàn),D四點(diǎn)共圓;
(Ⅱ)若正△ABC的邊長為2,求,A,E,F(xiàn),D所在圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省南陽市高三第八次周考理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在正△ABC中,點(diǎn)D,E分別在邊AC, AB上,且AD=AC, AE= AB,BD,CE相交于點(diǎn)F。
(I)求證:A,E,F(xiàn),D四點(diǎn)共圓;
(Ⅱ)若正△ABC的邊長為2,求,A,E,F(xiàn),D所在圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省哈師大附中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com