【題目】某高中社團進行社會實踐,對[25,55]歲的人群隨機抽取n人進行了一次是否開通“微博”的調(diào)查,若開通“微博”的稱為“時尚族”,否則稱為“非時尚族”,通過調(diào)查分別得到如圖所示統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
完成以下問題:
(Ⅰ)補全頻率分布直方圖并求na , p的值;
(Ⅱ)從[40,50)歲年齡段的“時尚族”中采用分層抽樣法抽取18人參加網(wǎng)絡(luò)時尚達人大賽,其中選取3人作為領(lǐng)隊,記選取的3名領(lǐng)隊中年齡在[40,45)歲的人數(shù)為X,求X的分布列和期望E(X)..

【答案】解:(Ⅰ)第二組的頻率為1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,

所以高為 . 頻率直方圖如下:

第一組的人數(shù)為 ,頻率為0.04×5=0.2,所以

由題可知,第二組的頻率為0.3,所以第二組的人數(shù)為1000×0.3=300, 所以

第四組的頻率為0.03×5=0.15,所以第四組的人數(shù)為1000×0.15=150, 所以a=150×0.4=60.

(Ⅱ)因為[40,45)歲年齡段的“時尚族”與[45,50)歲年齡段的“時尚族”的比值

為60:30=2:1,所以采用分層抽樣法抽取18人,[40,45)歲中有12人,[45,50)歲中有6人.

隨機變量X服從超幾何分布. , ,

所以隨機變量X的分布列為

X

0

1

2

3

P

∴數(shù)學期望 (或者


【解析】(1)根據(jù)題意結(jié)合已知條件可求出第二組的頻率然后求出高的值畫出頻率的直方圖即可求出第一組的人數(shù)和頻率從而求出n的值,再根據(jù)第二組的頻率以及人數(shù)求出p的值然后求出第四組的頻率和人數(shù)進而求出a的值。(2)根據(jù)題意結(jié)合已知條件采用分層抽樣法抽取18人,[40,45)歲中有12人,[45,50)歲中有6人,隨機變量X的取值可能為0、1、2、3分別求出相應(yīng)的概率,求出各個隨機變量下的概率列出分布列,再根據(jù)數(shù)學期望公式代入數(shù)值求出結(jié)果即可,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列滿足

(1)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項.

(2)數(shù)列求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=ex+mx2﹣m(m>0),當x1+x2=1時,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,則實數(shù)x1的取值范圍是(
A.(﹣∞,0)
B.
C.
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計劃在某水庫建一座至多安裝 臺發(fā)電機的水電站,過去 年的水文資料顯示,水庫年入流量 (年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,不足 的年份有 年,不低于 且不超過 的年份有 年,超過 的年份有 年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.
(1)求未來 年中,設(shè) 表示流量超過 的年數(shù),求 的分布列及期望;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量 限制,并有如下關(guān)系:

年入流量

發(fā)電機最多可運行臺數(shù)

1

若某臺發(fā)電機運行,則該臺年利潤為 萬元,若某臺發(fā)電機未運行,則該臺年虧損 萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知(x+ n展開式的二項式系數(shù)之和為256
(1)求n;
(2)若展開式中常數(shù)項為 ,求m的值;
(3)若展開式中系數(shù)最大項只有第6項和第7項,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解青少年的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名青少年進行調(diào)查,得到如下列聯(lián)表:

常喝

不常喝

總計

肥胖

2

不肥胖

18

總計

30

已知從這30名青少年中隨機抽取1名,抽到肥胖青少年的概率為
(1)請將列聯(lián)表補充完整;
(2)是否有99.5%的把握認為青少年的肥胖與常喝碳酸飲料有關(guān)?
獨立性檢驗臨界值表:

P(K2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中n=a+b+c+d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點分別為F1 , F2 , 右頂點為A,上頂點為B,離心率為e.橢圓上一點C滿足:C在x軸上方,且CF1⊥x軸.

(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長交橢圓于另一點D若 ≤e≤ ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知銳角三角形ABC中,角A,B,C所對的邊分別為a,b,c若c﹣a=2acosB,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】美索不達米亞平原是人類文明的發(fā)祥地之一.美索不達米亞人善于計算,他們創(chuàng)造了優(yōu)良的計數(shù)系統(tǒng),其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運算都精確到小數(shù)點后兩位)則輸出結(jié)果為(
A.2.81
B.2.82
C.2.83
D.2.84

查看答案和解析>>

同步練習冊答案