(2012•東至縣模擬)設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3+ax2+(a-2)x的導(dǎo)函數(shù)是f′(x)是偶函數(shù),則曲線y=f(x)在原點(diǎn)處的切線方程為( 。
分析:欲求曲線y=f(x)在原點(diǎn)處的切線方程,只需求出切線的斜率即可,利用曲線的切線斜率是曲線在切點(diǎn)處的導(dǎo)數(shù),先求函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)是偶函數(shù),求出a的值,就可得到切線斜率,求出切線方程.
解答:解:由f(x)=x3+ax2+(a-2)x,得,f′(x)=3x2+2ax+(a-2),
又∵f'(x)是偶函數(shù),∴2a=0,即a=0
∴f'(x)=3x2-2,
∴曲線y=f(x)在原點(diǎn)處的切線斜率為-2,
曲線y=f(x)在原點(diǎn)處的切線方程為y=-2x
故選B
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的幾何意義,曲線的切線斜率是曲線在切點(diǎn)處的導(dǎo)數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東至縣模擬)已知命題p:|x-1|+|x+1|≥3a恒成立,命題q:y=(2a-1)x為減函數(shù),若p且q為真命題,則a的取值范圍是
1
2
,
2
3
]
1
2
2
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東至縣模擬)已知a,b都是正實(shí)數(shù),且a+b=2,求證:
a2
a+1
+
b2
b+1
≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東至縣模擬)cso15°cos30°+cos105°sin30°的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東至縣模擬)已知函數(shù)f(x)=2cos(ωx+φ)(ω>0)的圖象關(guān)于直線x=
π
12
對(duì)稱,f(
π
3
)=0,則ω的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東至縣模擬)若a>0,b>0且a+b=2,則下列不等式恒成立的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案