(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系中,直線l的參數(shù)方程為:
在以O(shè)為極點,以x 軸的正半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為:
(Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線與圓C的位置關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系內(nèi),已知曲線的方程為
,以極點為原點,極軸方向為
正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,曲線
的參數(shù)方程為
(
為參數(shù)).
(1) 求曲線的直角坐標(biāo)方程以及曲線
的普通方程;
(2) 設(shè)點為曲線
上的動點,過點
作曲線
的兩條切線,求這兩條切線所成角余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1) 在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為
為參數(shù)),M為
上的動點,P點滿足
,點P的軌跡為曲線
.已知在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線
與
的異于極點的交點為A,與
的異于極點的交點為B,求|AB|.
(2) 某旅游景點給游人準(zhǔn)備了這樣一個游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙,…,第8行9個鐵釘之間有8個空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達(dá)①②③④號球槽,分別獎4元、2元、0元、-2元.(一個玻璃球的滾動方式:通過第1行的空隙向下滾動,小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動,落入第8行的某一個空隙后,最后掉入迷尼板下方的相應(yīng)球槽內(nèi)).恰逢周末,某同學(xué)看了一個小時,留心數(shù)了數(shù),有80人次玩.試用你學(xué)過的知識分析,這一小時內(nèi)游戲莊家是贏是賠? 通過計算,你得到什么啟示?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),在以
為極點,
軸的正半軸為極軸的極坐標(biāo)系中,曲線
是圓心在極軸上,且經(jīng)過極點的圓.已知曲線
上的點
對應(yīng)的參數(shù)
,射線
與曲線
交于點
.
(I)求曲線,
的方程;
(II)若點,
在曲線
上,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2個小題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)(本小題滿分7分)選修4—2:矩陣與變換
在平面直角坐標(biāo)系中,把矩陣
確定的壓縮變換
與矩陣
確定的旋轉(zhuǎn)變換
進(jìn)行復(fù)合,得到復(fù)合變換
.
(Ⅰ)求復(fù)合變換的坐標(biāo)變換公式;
(Ⅱ)求圓在復(fù)合變換
的作用下所得曲線
的方程.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),
、
分別為直線
與
軸、
軸的交點,線段
的中點為
.
(Ⅰ)求直線的直角坐標(biāo)方程;
(Ⅱ)以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,求點
的極坐標(biāo)和直線
的極坐標(biāo)方程.
(3)(本小題滿分7分)選修4—5:不等式選講
已知不等式的解集與關(guān)于
的不等式
的解集相等.
(Ⅰ)求實數(shù),
的值;
(Ⅱ)求函數(shù)的最大值,以及取得最大值時
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)的極點在平面直角坐標(biāo)系的原點處,極軸與
軸的正半軸重合,且長度單位相同.圓
的參數(shù)方程為
(
為參數(shù)),點
的極坐標(biāo)為
. (1)化圓
的參數(shù)方程為極坐標(biāo)方程;
(2)若點是圓
上的任意一點, 求
,
兩點間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
,直線
的參數(shù)方程是
(
為參數(shù))。
(1) 求極點在直線上的射影點
的極坐標(biāo);
(2) 若、
分別為曲線
、直線
上的動點,求
的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,D、E分別是△ABC的邊AB、AC上的點,DE∥BC,
且=2,那么△ADE與四邊形DBCE的面積比是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建坐標(biāo)系,已知曲線
,已知過點
的直線
的參數(shù)方程為:
直線
與曲線
分別交于
(1)寫出曲線和直線
的普通方程;
(2)若成等比數(shù)列,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com