已知向量
a
,
b
滿足|
a
|=|
b
|=1,且
a
,
b
的夾角為
π
3
,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A、B滿足
OA
=2
a
+
b
,
OB
=3
a
-
b
,則△OAB的面積為
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:由向量的運(yùn)算能求出|
OA
|,|
OB
|和
OA
OB
,代入夾角公式得cos∠BOA,利用三角函數(shù)知識(shí)能求出sin∠BOA,由此利用∴△OAB的面積S=
1
2
|
OA
|•|
OB
|•sin∠BOA
,能求出結(jié)果.
解答: 解:∵向量
a
b
滿足|
a
|=|
b
|=1,且
a
,
b
的夾角為
π
3
,
O為平面直角坐標(biāo)系的原點(diǎn),
點(diǎn)A、B滿足
OA
=2
a
+
b
,
OB
=3
a
-
b
,
∴|
OA
|=
(2
a
+
b
)2
=
4
a
2
+4
a
b
+
b
2
=
4+4×
1
2
+1
=
7
,
|
OB
|=
(3
a
-
b
)2
=
9
a
2
-6
a
b
+
b
2
=
9-6×
1
2
+1
=
7
,
OA
OB
=(2
a
+
b
)•(3
a
-
b
)=6
a
2
+
a
b
-
b
2
=6+
1
2
-1=
11
2
,
∴cos∠BOA=
OA
OB
|
OA
|•|
OB
|
=
11
2
7
7
=
11
14
,
∴sin∠BOA=
1-(
11
14
)2
=
5
3
14

∴△OAB的面積S=
1
2
|
OA
|•|
OB
|•sin∠BOA

=
1
2
×
7
×
7
×
5
3
14
=
5
3
4

故答案為:
5
3
4
點(diǎn)評(píng):本題考查三角形面積的求法,是中檔題,解題題時(shí)要認(rèn)真審題,注意向量的模、數(shù)量積、三角函數(shù)等知識(shí)點(diǎn)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A1B1C1D1中,AD=1,AA1=AB=2.點(diǎn)E是線段AB上的動(dòng)點(diǎn),點(diǎn)M為D1C的中點(diǎn).
(1)當(dāng)E點(diǎn)是AB中點(diǎn)時(shí),求證:直線ME∥平面ADD1A1
(2)若二面角A-D1E-C的余弦值為
4
5
15
.求線段AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知b2=a(a+b),cos(A-B)+cosC=1-cos2C,試求
a+c
b
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一彈簧在彈性限度內(nèi),拉伸彈簧所用的力與彈簧伸長(zhǎng)的長(zhǎng)度成正比.如果20N的力能使彈簧伸長(zhǎng)3cm,則把彈簧從平衡位置拉長(zhǎng)6cm(在彈性限度內(nèi))時(shí)所做的功為
 
.(單位:焦耳)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>b>0)右支上一點(diǎn)P到左焦點(diǎn)的距離是到右準(zhǔn)線距離的6倍,則該雙曲線離心率的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

邊長(zhǎng)為4的正四面體P-ABC中,E為PA的中點(diǎn),則平面EBC與平面ABC所成銳二面角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P在
x2
25
-
y2
144
=1上,若|PF1|=16,則|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O,過(guò)BC中點(diǎn)D作平行于AC的直線l,l交AB于E,交⊙O在A點(diǎn)處的切線于點(diǎn)P,若PE=6,ED=3,則AE的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下判斷正確的是( 。
A、函數(shù)y=f(x)為R上的可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)f(x)極值點(diǎn)的充要條件
B、命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C、命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題
D、“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案