已知圓C:(x+1)2+(y-2)2=6,直線l:mx-y+1-m=0.

(1)求證:不論m取什么實數(shù),直線l與圓C恒交于兩點;

(2)求直線l被圓C截得的弦長最小時l的方程.

答案:
解析:

  解:(1)∵直線恒過定點,且,∴點在圓內(nèi),∴直線與圓恒交于兩點.

  (2)由平面幾何性質(zhì)可知,當過圓內(nèi)的定點的直線垂直于時,直線被圓截得的弦長最小,此時,∴所求直線的方程為


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(mR).

(1)證明不論m取什么實數(shù),直線l與圓恒交于兩點;

(2)求直線被圓C截得的弦長最小時l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學必修二4.2直線、圓的位置關系練習卷(一) 題型:解答題

已知圓C:(x-1) +(y-2) =25,直線L:(2m+1)x+(m+1)y-7m-4=0(m∈R)

(1)證明:無論m取什么實數(shù),L與圓恒交于兩點.

(2)求直線被圓C截得的弦長最小時L的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆吉林省長春市高一上學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).

(1)證明:直線l與圓相交;

(2)求直線l被圓截得的弦長最小時的直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+(y-2)2=2,點P(2,-1),過P點作圓C的切線PA、PBA、B為切點.

(1)求PA、PB所在直線的方程;

(2)求切線長|PA|;

(3)求∠APB的正弦值;

(4)求AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+y2=1與直l:x-2y+1=0相交于A、B兩點,則|AB|    .

查看答案和解析>>

同步練習冊答案