已知圓C:(x-1) +(y-2) =25,直線L:(2m+1)x+(m+1)y-7m-4=0(m∈R)

(1)證明:無論m取什么實數(shù),L與圓恒交于兩點.

(2)求直線被圓C截得的弦長最小時L的方程.

 

【答案】

(1)見解析;(2) L的方程為y-1=2(x-3)即2x-y-5=0

【解析】解(1)將L的方程整理為(x+y-4)+m(2x+y-7)=0

∴直線L經(jīng)過定點A(3,1)

∵(3-1)  +(1-2) =5<25

∴點A在圓C的內部,故直線L與圓恒有兩個交點.

(2)圓心M(1,2),當截得弦長最小時,則L⊥AM,由k=

L的方程為y-1=2(x-3)即2x-y-5=0.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(mR).

(1)證明不論m取什么實數(shù),直線l與圓恒交于兩點;

(2)求直線被圓C截得的弦長最小時l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆吉林省長春市高一上學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).

(1)證明:直線l與圓相交;

(2)求直線l被圓截得的弦長最小時的直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+(y-2)2=2,點P(2,-1),過P點作圓C的切線PAPB,AB為切點.

(1)求PA、PB所在直線的方程;

(2)求切線長|PA|;

(3)求∠APB的正弦值;

(4)求AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+y2=1與直l:x-2y+1=0相交于A、B兩點,則|AB|    .

查看答案和解析>>

同步練習冊答案