已知i是虛數(shù)單位,m∈R,z=m(m-1)+(m2+2m-3)i.
(Ⅰ)若z是純虛數(shù),求m的值;
(Ⅱ)若在復(fù)平面C內(nèi),z所對(duì)應(yīng)的點(diǎn)在第四象限,求m的取值范圍;
(Ⅲ)當(dāng)m=2時(shí),z是關(guān)于x的方程x2+px+q=0的一個(gè)根,求實(shí)數(shù)p,q的值.
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(Ⅰ)根據(jù) z為純虛數(shù),可得它的實(shí)部等于零且虛部不等于零,由此求得m的值.
(Ⅱ)由z所對(duì)應(yīng)的點(diǎn)在第四象限,可得它的實(shí)部大于零且虛部小等于零,解得m的范圍.
(Ⅲ)把z=2+5i代入方程x2+px+q=0,可得即 (2p+q-21)+(5p+20)i=0,再根據(jù)兩個(gè)復(fù)數(shù)相等的充要條件求出p、q的值.
解答: 解:(Ⅰ)∵z=m(m-1)+(m2+2m-3)i 為純虛數(shù),∴
m(m-1)=0
m2+2m-3≠0
,求得m=0.
(Ⅱ)∵z所對(duì)應(yīng)的點(diǎn)在第四象限,∴
m(m-1)>0
m2+2m-3<0
,解得-3<m<0.
(Ⅲ)當(dāng)m=2時(shí),z=2+5i 是關(guān)于x的方程x2+px+q=0的一個(gè)根,
∴(2+5i)2+p(2+5i)+q=0,即 (2p+q-21)+(5p+20)i=0,∴
2p+q-21=0
5p+20=0

解得
p=-4
q=29
點(diǎn)評(píng):本題主要考查復(fù)數(shù)代數(shù)形式的混合運(yùn)算,兩個(gè)復(fù)數(shù)相等的充要條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 
2
0
(cos
π
2
x+
4-x2
)dx的值為( 。
A、2π
B、π
C、π+1
D、π+
2
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C1
x=2cosθ
y=3sinθ
(θ為參數(shù)),曲線C2
x=
2
2
t
y=-6+
2
2
t
 (t為參數(shù)).
(1)分別將曲線C1與曲線C2化為普通方程.
(2)點(diǎn)P是曲線C1上的動(dòng)點(diǎn),求P到曲線C2的距離的最小值,并求此時(shí)點(diǎn)P點(diǎn)的直角坐標(biāo)系下的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a5=8,a10=18,三點(diǎn)(a1,0)、(a2,2)、(a3,0)在圓C上,
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l:mx+ny+1=0被圓C所截得的弦長(zhǎng)為2
3
,求m2+n2的最小值;
(Ⅲ)若一條動(dòng)直線與圓C交于A、B兩點(diǎn),且總有|OA|•|OB|=8,(點(diǎn)O為坐標(biāo)原點(diǎn)),試探究直線AB是否恒與一個(gè)定圓相切,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
4
7
3
,sin(α+β)=
5
14
3
,α∈(0,
π
2
),α+β∈(
π
2
,π),求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱錐C-ABD中,AB=AD=BD=BC=CD=2,O為BD的中點(diǎn),∠AOC=120°,P為AC上一點(diǎn),Q為AO上一點(diǎn),且
AP
PC
=
AQ
QO
=2

(Ⅰ)求證:PQ∥平面BCD;
(Ⅱ)求三棱錐P-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y都有f(xy)=f(x)+f(y)成立.
(1)求f(0)和f(1)的值.
(2)若f(2)=a,f(3)=b(a,b均為常數(shù)),求f(36)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠BAC=90°,AA1⊥平面ABC,D、E分別為A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且AF=
1
4
AB.
(Ⅰ)求證:EF∥平面BDC1;
(Ⅱ)在棱AC上是否存在一個(gè)點(diǎn)G,使得平面EFG將三棱柱分割成的兩部分體積之比為1:31,若存在,指出點(diǎn)G的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形的圓心角為
2
5
π,半徑為5cm,則扇形的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案