【題目】已知函數(shù),其中.
(1)若和在區(qū)間上具有時(shí)間的單調(diào)性,求實(shí)數(shù)的取值范圍;
(2)若,且函數(shù)的最小值為,求的最小值.
【答案】(1);(2).
【解析】
試題分析:(1)因?yàn)?/span>,在上恒成立,即在上單調(diào)遞減,所以,且單調(diào)遞增,比較與端點(diǎn)的大小關(guān)系,即時(shí),,不合題意;即時(shí),在上單調(diào)遞減,在上單調(diào)遞增,又在上單調(diào)遞減,所以解得;(2),令,通過參變分離構(gòu)造新函數(shù),可判斷出在時(shí),,所以的單調(diào)性與的正負(fù)有關(guān),因此在單減,單增,所以,通過求導(dǎo)可求得最小值.
試題解析:解:(1),
∵在上恒成立,即在上單調(diào)遞減,
當(dāng)時(shí),,即在上單調(diào)遞增,不合題意
當(dāng)時(shí),由,得,由,得,
∴的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為
∵和在區(qū)間上具有相同的單調(diào)性,
∴,解得,
綜上,的取值范圍是
(2),
由得到,設(shè),
當(dāng)時(shí),;當(dāng)時(shí),,
從而在上遞減,在上遞增,∴
當(dāng)時(shí),,即,
在上,遞減;
在上,遞增,∴,
設(shè),
在上遞減,∴,
∴的最小值為0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,).
(1)若的部分圖像如圖所示,求的解析式;
(2)在(1)的條件下,求最小正實(shí)數(shù),使得函數(shù)的圖象向左平移個(gè)單位后所對(duì)應(yīng)的函數(shù)是偶函數(shù);
(3)若在上是單調(diào)遞增函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某棋類游戲的規(guī)則如下:棋子的初始位置在起點(diǎn)處,玩家每擲出一枚骰子,朝上一面的點(diǎn)數(shù)即為向終點(diǎn)方向前進(jìn)的格子數(shù),(比如玩家一開始擲出的骰子點(diǎn)數(shù)為3,則走到炸彈所在位置),若踩到炸彈則返回起點(diǎn)重新開始,若達(dá)到終點(diǎn)則游戲結(jié)束.現(xiàn)在已知小明擲完三次骰子后游戲恰好結(jié)束,則所有不同的情況種數(shù)為__________.
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于無窮數(shù)列和函數(shù),若,則稱是數(shù)列的母函數(shù).
(Ⅰ)定義在上的函數(shù)滿足:對(duì)任意,都有,且;又?jǐn)?shù)列滿足.
(1)求證: 是數(shù)列的母函數(shù);
(2)求數(shù)列的前項(xiàng)和.
(Ⅱ)已知是數(shù)列的母函數(shù),且.若數(shù)列的前項(xiàng)和為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 其中,
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值及的單調(diào)區(qū)間;
(2)若對(duì)任意的, 使得恒成立,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)求證:曲線在點(diǎn)處的切線過定點(diǎn);
(2)若是在區(qū)間上的極大值,但不是最大值,求實(shí)數(shù)的取值范圍;
(3)求證:對(duì)任意給定的正數(shù) ,總存在,使得在上為單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“雅荷文學(xué)社”、“青春風(fēng)街舞社”、“羽乒協(xié)會(huì)”、“演講團(tuán)”、“吉他協(xié)會(huì)”五個(gè)社團(tuán),若每名同學(xué)必須參加且只能參加1個(gè)社團(tuán)且每個(gè)社團(tuán)至多兩人參加,則這6個(gè)人中至多有1人參加“演講團(tuán)”的不同參加方法數(shù)為( )
A. 4680 B. 4770 C. 5040 D. 5200
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠2萬元設(shè)計(jì)了某款式的服裝,根據(jù)經(jīng)驗(yàn),每生產(chǎn)1百套該款式服裝的成本為1萬元,每生產(chǎn)(百套)的銷售額(單位:萬元).
(1)若生產(chǎn)6百套此款服裝,求該廠獲得的利潤(rùn);
(2)該廠至少生產(chǎn)多少套此款式服裝才可以不虧本?
(3)試確定該廠生產(chǎn)多少套此款式服裝可使利潤(rùn)最大,并求最大利潤(rùn).(注:利潤(rùn)=銷售額-成本,其中成本=設(shè)計(jì)費(fèi)+生產(chǎn)成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間上的最大值為,求的值;
(3)若,有不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com