【題目】比較下列各組數(shù)中兩個(gè)數(shù)的大。
(1) 與;
(2)3與3.1;
(3) 與;
(4)0.20.6與0.30.4.
【答案】(1) > (2)3>3.1 (3) < (4)0.20.6<0.30.4.
【解析】試題分析:(1)借助于函數(shù)y=在(0,+∞)上單調(diào)遞增,即可比較大;
(2)借助于y=在(0,+∞)上為減函數(shù),即可比較大小;
(3)借助于中間變量0.20.4,易知0.20.6<0.20.4,0.20.4<0.30.4.
試題解析:
(1)函數(shù)y=在(0,+∞)上單調(diào)遞增,
又>,∴ >.
(2)y=在(0,+∞)上為減函數(shù),
又3<3.1,∴3>3.1
(3)函數(shù)y=在(0,+∞)上為減函數(shù),
又>,
∴<.
(4)函數(shù)取中間值0.20.4,函數(shù)y=0.2x在(0,+∞)上為減函數(shù),所以0.20.6<0.20.4;
又函數(shù)y=x0.4在(0,+∞)為增函數(shù),所以0.20.4<0.30.4.
∴0.20.6<0.30.4.
點(diǎn)睛: 本題考查冪函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.冪函數(shù)的圖象一定在第一象限內(nèi),一定不在第四象限,至于是否在第二、三象限內(nèi),要看函數(shù)的奇偶性;冪函數(shù)的圖象最多只能同時(shí)在兩個(gè)象限內(nèi);如果冪函數(shù)圖象與坐標(biāo)軸相交,則交點(diǎn)一定是原點(diǎn).對(duì)于函數(shù)f(x)=xα,當(dāng)時(shí),函數(shù)在單調(diào)遞減;當(dāng)時(shí),函數(shù)在單調(diào)遞增;當(dāng)時(shí),函數(shù)為常函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1 , AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在線段A1B1上運(yùn)動(dòng).
(Ⅰ)求證:PN⊥AM;
(Ⅱ)試確定點(diǎn)P的位置,使直線PN和平面ABC所成的角最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l過點(diǎn)M(3,4),其傾斜角為45°,圓C的參數(shù)方程為 .再以原點(diǎn)為極點(diǎn),以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xoy有相同的長(zhǎng)度單位.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,求|MA||MB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=-x+5的傾斜角是直線l的傾斜角的大小的5倍,分別求滿足下列條件的直線l的方程.
(1)過點(diǎn)P(3,-4);
(2)在x軸上截距為-2;
(3)在y軸上截距為3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一艘海監(jiān)船O上配有雷達(dá),其監(jiān)測(cè)范圍是半徑為25 km的圓形區(qū)域,一艘外籍輪船從位于海監(jiān)船正東40 km的A處出發(fā),徑直駛向位于海監(jiān)船正北30 km的B處島嶼,速度為28 km/h.
問:這艘外籍輪船能否被海監(jiān)船監(jiān)測(cè)到?若能,持續(xù)時(shí)間多長(zhǎng)?(要求用坐標(biāo)法)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)[x]表示不超過x的最大整數(shù),如:[π]=3,[﹣4.3]=﹣5.給出下列命題: ①對(duì)任意實(shí)數(shù)x,都有[x]﹣x≤0;
②若x1≤x2 , 則[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函數(shù)f(x)= ﹣ ,則y=[f(x)]+[f(﹣x)]的值域?yàn)閧﹣1,0}.
其中所有真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣2ax﹣8a2(a>0),記不等式f(x)≤0的解集為A.
(1)當(dāng)a=1時(shí),求集合A;
(2)若(﹣1,1)A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC.
(1)求證:平面AEF⊥平面PBC.
(2)求二面角P-BC-A的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com