【題目】已知橢圓C上的點到右焦點F的最大距離為,離心率為

求橢圓C的方程;

如圖,過點的動直線l交橢圓CM,N兩點,直線l的斜率為,A為橢圓上的一點,直線OA的斜率為,且B是線段OA延長線上一點,且過原點O作以B為圓心,以為半徑的圓B的切線,切點為,求取值范圍.

【答案】(1);(2)

【解析】

依題,結(jié)合離心率求得ac的值,再由隱含條件求得b,則橢圓方程可求;

由已知可得直線l的方程,與橢圓C聯(lián)立,化為關(guān)于x的一元二次方程,利用弦長公式求得弦,寫出OA所在直線方程,與橢C聯(lián)立求得,得到,利用換元法求得的范圍,把轉(zhuǎn)化為含的代數(shù)式求解.

依題,

解得,,

橢圓C的方程為;

由已知可得直線l的方程為:,與橢圓C聯(lián)立,

,由題意,

設(shè),,則,

,

OA所在直線方程為,與橢C聯(lián)立,解得,

,則,

,

得到

,由知,,換元得:

,其中

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某人打算做一個正四棱錐形的金字塔模型,先用木料搭邊框,再用其他材料填充,已知金字塔的每一條棱和邊都相等.

(1)求證:直線AC垂直于直線SD;

(2)若搭邊框共使用木料24米,則需要多少立方米的填充材料才能將整個金字塔內(nèi)部填滿?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的奇函數(shù)fx),若函數(shù)fx+1)為偶函數(shù),且f1=1,則fi=______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照,,分成5組,制成如圖所示頻率分直方圖.

(1)求圖中x的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)A,B分別是雙曲線的左右頂點,設(shè)過的直線PA,PB與雙曲線分別交于點M,N,直線MNx軸于點Q,過Q的直線交雙曲線的于ST兩點,且,則的面積( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某籃球隊甲、乙兩名運動員練習罰球,每人練習10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)若不等式解集為,求實數(shù)的值;

(2)在(1)的條件下,若不等式解集非空,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,棱錐PABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

1)求證:BD⊥平面PAC;

2)求二面角PCDB余弦值的大;

查看答案和解析>>

同步練習冊答案