【題目】如圖,直二面角D﹣AB﹣E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE. (Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求二面角B﹣AC﹣E的余弦值;
(Ⅲ)求點D到平面ACE的距離.

【答案】解:(Ⅰ)∵BF⊥平面ACE.∴BF⊥AE ∵二面角D﹣AB﹣E為直二面角.且CB⊥AB.
∴CB⊥平面ABE∴CB⊥AE
∵BF∩CB=B
∴AE⊥平面BCE
(Ⅱ)連接BD交AC交于G,連接FG
∵正方形ABCD邊長為2.∴BG⊥AC,BG=
∵BF⊥平面ACE.由三垂線定理的逆定理得FG⊥AC.
∴∠BGF是二面B﹣AC﹣E的平面角
∵AE⊥平面BCE,∴AE⊥EC
又∵AE=EB,∴在等腰直角三角形AEB中,BE=
又∵Rt△BCE中,EC=
∴BF= =
∴Rt△BFG中sin∠BGF= =
∴二面角B﹣AC﹣E的正弦值等于
(Ⅲ)過點E作EO⊥AB交AB于點O,OE=1
∵二面角D﹣AB﹣E為直二面角,∴EO⊥平面ABCD
設D到平面ACE的距離為h,由VDACE=VEACD , 可得h= =
∴點D到平面ACE的距離為

【解析】(Ⅰ)欲證AE⊥平面BCE,由題設條件知可先證BF⊥AE,CB⊥AE,再由線面垂直的判定定理得出線面垂直即可;(Ⅱ)求二面角B﹣AC﹣E的正弦值,需要先作角,連接BD交AC交于G,連接FG,可證得∠BGF是二面B﹣AC﹣E的平面角,在△BFG中求解即可;(Ⅲ)由題設,利用由VDACE=VEACD , 求點D到平面ACE的距離.
【考點精析】解答此題的關鍵在于理解直線與平面垂直的判定的相關知識,掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:x2+y2﹣12x﹣14y+60=0及其上一點A(2,4).
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;
(3)設點T(t,0)滿足:存在圓M上的兩點P和Q,使得 + = ,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) , 是其函數(shù)圖象的一條對稱軸. (Ⅰ)求ω的值;
(Ⅱ)若f(x)的定義域為 ,值域為[1,5],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B兩點分別在兩條互相垂直的直線y=2x和x+ay=0上,且線段AB的中點為P(0, ),則直線AB的方程為( )
A.y=- x+5
B.y= x-5
C.y= x+5
D.y=- x-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線y=- x+5的傾斜角是直線l的傾斜角的大小的5倍,分別求滿足下列條件的直線l的方程.
(1)過點P(3,-4);
(2)在x軸上截距為-2;
(3)在y軸上截距為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,如圖E、F分別是BB1 , CD的中點,
(1)求證:D1F⊥AE;
(2)求直線EF與CB1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高二年級學生中隨機抽取40名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),[90,100]后得到如圖的頻率分布直方圖.
(1)求圖中實數(shù)a的值;
(2)若該校高二年級共有學生640人,試估計該校高二年級期中考試數(shù)學成績不低于60分的人數(shù);
(3)若從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內的學生中隨機選取兩名學生,求這兩名學生的數(shù)學成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a>0,b>0,且函數(shù)f(x)=4x3﹣ax2﹣2bx在x=1處有極值,則 + 的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某體育場要建造一個長方形游泳池,其容積為4800m3 , 深為3m,如果建造池壁的單價為a且建造池底的單價是建造池壁的1.5倍,怎樣設計水池的長和寬,才能使總造價最底?最低造價是多少?

查看答案和解析>>

同步練習冊答案