已知雙曲線的中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)為F(-2,0).
(1)求雙曲線方程;
(2)設(shè)Q是雙曲線上一點(diǎn),且過(guò)點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,若= 2,求直線l的方程.
(1)
(2)y=±(x+2)或y=±(x+2)
【解析】(1)由題意可設(shè)所求的雙曲線方程為,
則有e==2,c=2,所以a=1,則b=,
所以所求的雙曲線方程為 .
(2)因?yàn)橹本l與y軸相交于M且過(guò)焦點(diǎn)F(-2,0),
所以l的斜率一定存在,設(shè)為k,則l:y=k(x+2),
令x=0,得M(0,2k),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719514311848626/SYS201411171951454310529922_DA/SYS201411171951454310529922_DA.007.png">= 2|M,Q,F(xiàn)共線于l,
所以= 2或= -2
當(dāng)=2時(shí),, ,
所以Q的坐標(biāo)(-,)
因?yàn)镼在雙曲線上,
所以,所以k=±,
所以直線l的方程為y=±(x+2).
當(dāng)= -2時(shí),
同理求得Q(-4,-2k),代入雙曲線方程得,
16-=1,所以k=±,
所以直線l的方程為y=±(x+2).
綜上,所求的直線l的方程為y=± (x+2)或y=±(x+2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科排列組合綜合應(yīng)用(解析版) 題型:選擇題
從1,3,5,7,9這五個(gè)數(shù)中,每次取出兩個(gè)不同的數(shù)分別記為a,b,共可得到lga-lgb的不同值的個(gè)數(shù)是( )
A.9
B.10
C.18
D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科對(duì)數(shù)與對(duì)數(shù)函數(shù)(解析版) 題型:選擇題
已知x,y為正實(shí)數(shù),則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科同角三角函數(shù)的基本關(guān)系式和誘導(dǎo)公式(解析版) 題型:選擇題
已知tan,是關(guān)于x的方程x2-kx+k2-3=0的兩個(gè)實(shí)根,且3π<<,則cos+sin= ( )
A.
B.
C. -
D. -
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科反函數(shù)(解析版) 題型:選擇題
已知函數(shù),若是以2為周期的偶函數(shù),且當(dāng)時(shí),有,則函數(shù)的反函數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科雙曲線(解析版) 題型:選擇題
如圖,分別是雙曲線C:的左、右焦點(diǎn),B是虛軸的端點(diǎn),直線F1B與C的兩條漸近線分別交于P,Q兩點(diǎn),線段PQ的垂直平分線與x軸交與點(diǎn)M,若|MF2|=|F1F2|,則C的離心率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科參數(shù)方程(解析版) 題型:解答題
已知?jiǎng)狱c(diǎn)P,Q都在曲線C: (t為參數(shù))上,對(duì)應(yīng)參數(shù)分別為t=與t=2 (0<<2π),M為PQ的中點(diǎn).
(1)求M的軌跡的參數(shù)方程;
(2)將M到坐標(biāo)原點(diǎn)的距離d表示為的函數(shù),并判斷M的軌跡是否過(guò)坐標(biāo)原點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科函數(shù)的奇偶性(解析版) 題型:填空題
設(shè)是上的奇函數(shù),且,下面關(guān)于的判定:其中正確命題的序號(hào)為_(kāi)______.
①;
②是以4為周期的函數(shù);
③的圖象關(guān)于對(duì)稱(chēng);
④的圖象關(guān)于對(duì)稱(chēng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科幾何概型(解析版) 題型:填空題
隨機(jī)地向區(qū)域內(nèi)投點(diǎn),點(diǎn)落在區(qū)域的每一個(gè)位置是等可能的,則坐標(biāo)原點(diǎn)與該點(diǎn)直線的傾斜角小于的概率為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com