【題目】各棱長(zhǎng)都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |=

【答案】
【解析】解:連接CE,并延長(zhǎng)交AD于F,連接BF,
由EG∥平面ABD,EG平面BCF,平面BCF∩平面ABD=BF,
可得EG∥BF,由G為BC的中點(diǎn),可得E為CF的中點(diǎn),
設(shè)AF=t,則 = + )= + ),
在四面體ABCD中, = = =4×4× =8,
= + )(
= + 2
= (8﹣8+ 16﹣ 8)=1,
解得t=1,即 = + ),
可得| |2= 2+ 2+
= ×(16+ ×16+ ×8)= ,
可得| |=
故答案為:

連接CE,并延長(zhǎng)交AD于F,連接BF,運(yùn)用線面平行的性質(zhì)定理可得EG∥BF,由G為BC的中點(diǎn),可得E為CF的中點(diǎn),設(shè)AF=t,再由向量的中點(diǎn)的向量表示,結(jié)合向量的數(shù)量積的性質(zhì),解得t=1,再由向量的模的公式,計(jì)算即可得到所求值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Cx2y2+2x-4y+3=0.

(1)若直線l過(guò)點(diǎn)(-2,0)且被圓C截得的弦長(zhǎng)為2,求直線l的方程;

(2)從圓C外一點(diǎn)P向圓C引一條切線,切點(diǎn)為MO為坐標(biāo)原點(diǎn),且|PM|=|PO|,求|PM|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC,滿足bcosC+ bsinC﹣a﹣c=0
(1)求角B的值;
(2)若a=2,且AC邊上的中線BD長(zhǎng)為 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車(chē)站每天均有3輛開(kāi)往省城的分為上、中、下等級(jí)的客車(chē),某天袁先生準(zhǔn)備在該汽車(chē)站乘車(chē)前往省城辦事,但他不知道客車(chē)的車(chē)況,也不知道發(fā)車(chē)順序.為了盡可能乘上上等車(chē),他采取如下策略:先放過(guò)一輛,如果第二輛比第一輛好則上第二輛,否則上第三輛.則他乘上上等車(chē)的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用C(A)表示非空集合A中的元素個(gè)數(shù),定義A*B= ,若A={x|x2﹣ax﹣2=0,a∈R},B={x||x2+bx+2|=2,b∈R},且A*B=2,則b的取值范圍(
A.b≥2 或b≤﹣2
B.b>2 或b<﹣2
C.b≥4或b≤﹣4
D.b>4或b<﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先后拋擲兩枚骰子,設(shè)出現(xiàn)的點(diǎn)數(shù)之和是12,11,10的概率依次是P1,P2,P3,則(

(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 過(guò)點(diǎn),且離心率為.

(1)求橢圓的方程;

(2)斜率為的直線與橢圓交于,兩點(diǎn),在軸上存在點(diǎn)滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)調(diào)查了某班全部45名同學(xué)參加書(shū)法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)

參加書(shū)法社團(tuán)

未參加書(shū)法社團(tuán)

參加演講社團(tuán)

8

5

未參加演講社團(tuán)

2

30

(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加一個(gè)社團(tuán)的概率;

(2)在既參加書(shū)法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1,A2,A3,A4,A5,3名女同學(xué)B1,B2,B3.現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為, ,且經(jīng)過(guò)點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)的頂點(diǎn)都在橢圓上,其中關(guān)于原點(diǎn)對(duì)稱,試問(wèn)能否為正三角形?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案