△ABC中,a,b,c分別是角A,B,C的對邊,
m
=(2a+c,b),
n
=(cosB,cosC),且
m
n
=0.
(1)求角B的大。
(2)若a=2,S△ABC=4
3
,求b.
考點:余弦定理,正弦定理
專題:解三角形
分析:(1)利用向量數(shù)量積的運用建立等式,利用正弦定理把邊轉(zhuǎn)換成角的正弦,化簡整理求得cosB的值,則B可求得.
(2)利用三角形面積公式求得c,最后利用余弦定理求得b的值.
解答: 解:(1)
m
n
=(2a+c)cosB+bcosC=0,
∴2sinAcosB+sinCcosB+sinBcosC=2sinAcosB+sin(B+C)=2sinAcosB+sinA=0,
∵sinA≠0,
∴2cosB+1=0,即cosB=-
1
2
,
∴B=
3

(2)S△ABC=
1
2
acsinB=
1
2
•2•c•
3
2
=4
3
,
∴c=8,
∴b=
a2+c2-2accosB
=
4+64+2×2×8×
1
2
=2
21
點評:本題主要考查了余弦定理和正弦定理的應(yīng)用.考查了學生基礎(chǔ)知識的綜合運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,若cosBsinC=sinA,則△ABC的形狀一定是( 。
A、等腰直角三角形
B、等腰三角形
C、直角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n的值為4,則輸出S的值為( 。
 
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知sinθ+cosθ=
1
4
,則sin2θ等于( 。
A、-
15
4
B、
15
4
C、-
15
16
D、
15
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:x2-4x<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,且nan+1=2Sn,數(shù)列{bn}滿足b1=
1
2
,b2=
1
4
,對任意n∈N*.都有
b
2
n+1
=bn•bn+2
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令Tn=a1b1+a2b2+…+anbn,求證:
1
2
≤Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-mx2-x+1,其中m為實數(shù).
(1)當m=1時,求函數(shù)f(x)在區(qū)間[-1,
4
3
]上的最大值和最小值;
(2)若對一切的實數(shù)x,有f′(x)≥|x|-
7
4
恒成立,其中f′(x)為f(x)的導(dǎo)函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=
1
2
,an+1=
1
2-an
(n∈N*
(Ⅰ)求證:{
1
an-1
}為等差數(shù)列,并求出{an}的通項公式;
(Ⅱ)設(shè)bn=
1
an
-1,數(shù)列{bn}的前n項和為Bn,對任意n≥2都有B3n-Bn
m
20
成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x+2y=6,求2x+4y的最小值.

查看答案和解析>>

同步練習冊答案