焦點在x軸上的拋物線被直線y=2x+1截得的弦長為,求拋物線的標準方程.

y2=12x或y2=-4x.

提示:設拋物線方程后,用韋達定理及弦長公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知△AOB的一個頂點為拋物線y2=2x的頂點O,A、B兩點都在拋物線上,且∠AOB=90°.
(1)證明直線AB必過一定點;
(2)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點F(0,3),且和直線y+3=0相切的動圓圓心的軌跡方程為(    )
A.y2="12x"B.y2="-12x"C.x2="12y"D.x2=-12y

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的頂點為坐標原點,焦點在y軸上,拋物線上的點(m,-2)到焦點的距離為4,則m的值為(    )
A.4B.-2C.4或-4D.2或-2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設拋物線)上個點到直線3x+4y+12= 0的距離的最小值為1,求p的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若正方形ABCD的一條邊在直線上,另外兩個頂點在拋物線上.則該正方形面積的最小值為    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設拋物線y2=4x截直線y=2x+k所得弦長|AB|=3.
(1)求k的值;
(2)以弦AB為底邊,x軸上的P點為頂點組成的三角形面積為39時,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)的焦點作一條直線交拋物線于A(x1,y1),B(x2,y2),則 等于(    )
A.4B.-4C.-p2D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題





A.6B.8C.10D.12

查看答案和解析>>

同步練習冊答案