(本小題滿分9分)
 
(1)由題意知是方程的兩個(gè)根,根據(jù)韋達(dá)定理,可建立關(guān)于a,b的方程,求出a,b值,進(jìn)而求出f(x)的解析式.
(2)解不等式得函數(shù)的單調(diào)增區(qū)間;解不等式得函數(shù)的單調(diào)減區(qū)間.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),其中常數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值點(diǎn);
(Ⅱ)令,若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
(Ⅲ)設(shè)定義在D上的函數(shù)在點(diǎn)處的切線方程為當(dāng)時(shí),若D內(nèi)恒成立,則稱P為函數(shù)的“特殊點(diǎn)”,請你探究當(dāng)時(shí),函數(shù)是否存在“特殊點(diǎn)”,若存在,請最少求出一個(gè)“特殊點(diǎn)”的橫坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為常數(shù))
(1)若上單調(diào)遞增,且
(2)若f(x)在x=1和x=3處取得極值,且在x∈[-6,6]時(shí),函數(shù)的圖象在直線
的下方,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

f(x)是(0,+∞)上的非負(fù)可導(dǎo)函數(shù),且,對任意正數(shù)a,b,若a<b,
則(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值,
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)有極值,則導(dǎo)函數(shù)的圖象不可能是  (   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三次函數(shù)
(1)若函數(shù)過點(diǎn)且在點(diǎn)處的切線方程是,求函數(shù)的解析式;
(2)在(1)的條件下,若對于區(qū)間上任意兩個(gè)自變量的值,都有,求實(shí)數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)= x/4+ln(x-2)/(x-4),(1)求函數(shù)f)x)的定義域和極值;(2)若函數(shù)(fx)在區(qū)間[a2-5a,8-3a]上為增函數(shù),求實(shí)數(shù)a的取值范圍;(3)函數(shù)f(x)的圖象是否為中心對稱圖形?若是請指出對稱中心,并證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),求導(dǎo)函數(shù),并確定的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案