【題目】已知函數.
(1)當時,求的單調區(qū)間;
(2)若函數在處取得極大值,求實數的取值范圍
【答案】(1)的單調遞減區(qū)間為,單調遞增區(qū)間為,(2)
【解析】
(1)的定義域為,把代入函數解析式,求出導函數,利用導函數的零點對定義域分段,可得原函數的單調區(qū)間;
(2).對a分類求解可得使f(x)在x=1處取得極值的a的取值范圍.
解:(1)的定義域為,
當時,,
,
令,得,.
若,;若,.
所以的單調遞減區(qū)間為,單調遞增區(qū)間為,.
(2),
①當時,,令,得;
令,得.所以在處取得極大值.
②當時,,由①可知在處取得極大值.
③當時,,則無極值.
④當時,令,得或;令,得.
所以在處取得極大值.
⑤當時,令,得或;令,得.
所以在處取得極小值.
綜上,的取值范圍為.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸非負半軸為極軸且取相同的單位長度建立極坐標系.已知點軌跡的參數方程為(,為參數),點在曲線上.
(1)求點軌跡的普通方程和曲線的直角坐標方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且, .
求證:(1)直線DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數滿足對于任意實數,都有,且當時,,.
(1)判斷的奇偶性并證明;
(2)判斷的單調性,并求當時,的最大值及最小值;
(3)解關于的不等式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是R上的奇函數,且當x>0時,f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)畫出f(x)的圖像,并指出f(x)的單調區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:實數滿足不等式;
命題q:關于不等式對任意的恒成立.
(1)若命題為真命題,求實數的取值范圍;
(2)若“”為假命題,“”為真命題,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:
甲公司 | 乙公司 | ||||||||
職位 | A | B | C | D | 職位 | A | B | C | D |
月薪/千元 | 5 | 6 | 7 | 8 | 月薪/千元 | 4 | 6 | 8 | 10 |
獲得相應職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 獲得相應職位概率 | 0.4 | 0.3 | 0.2 | 0.1 |
(1)若兩人分別去應聘甲、乙兩家公司的C職位,記這兩人被甲、乙兩家公司的C職位錄用的人數和為,求的分布列;
(2)根據甲、乙兩家公司的聘用信息,如果你是該求職者,你會選擇哪一家公司?說明理由。
(3)若小王和小李分別被甲、乙兩家公司錄用,求小王月薪高于小李的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一只藥用昆蟲的產卵數與一定范圍內與溫度有關, 現(xiàn)收集了該種藥用昆蟲的6組觀測數據如下表:
溫度/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
產卵數/個 | 6 | 11 | 20 | 27 | 57 | 77 |
(1)若用線性回歸模型,求關于的回歸方程=x+(精確到0.1);
(2)若用非線性回歸模型求關的回歸方程為 且相關指數
( i )試與 (1)中的線性回歸模型相比,用 說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預測溫度為時該種藥用昆蟲的產卵數(結果取整數).
附:一組數據(x1,y1), (x2,y2), ...,(xn,yn), 其回歸直線=x+的斜率和截距的最小二乘估計為,,相關指數.
。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com