(、(本題12分)

如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面 ABCD,側(cè)棱PA=PD,底面ABCD為直角梯形,BCADABADAD=2AB=2BC=2,  OAD中點(diǎn).

(1)求證:PO⊥平面ABCD

(2)求直線PB與平面PAD所成角的正弦值;

(3)線段AD上是否存在點(diǎn)Q,使得三棱錐的體積為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

 

 

 

 

 

 

 

【答案】

F為PD的中點(diǎn)//CD且

      四邊形AEGF是平行四邊形…………………………10分

,又平面PCE⊥平面PCD.………………12

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)為了研究化肥對(duì)小麥產(chǎn)量的影響,某科學(xué)家將一片土地劃分成200個(gè)的小塊,并在100個(gè)小塊上施用新化肥,留下100個(gè)條件大體相當(dāng)?shù)男K不施用新化肥.下表1和表2分別是施用新化肥和不施用新化肥的小麥產(chǎn)量頻數(shù)分布表(小麥產(chǎn)量單位:kg)

表1:施用新化肥小麥產(chǎn)量頻數(shù)分布表

小麥產(chǎn)量

頻數(shù)

10

35

40

10

5

表2:不施用新化肥小麥產(chǎn)量頻數(shù)分布表

小麥產(chǎn)量

頻數(shù)

15

50

30

5

(10)      完成下面頻率分布直方圖;

(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)施用化肥和不施用化肥的一小塊土地的小麥平均產(chǎn)量;

(3)完成下面2×2列聯(lián)表,并回答能否有99.5%的把握認(rèn)為“施用新化肥和不施用新化肥的小麥產(chǎn)量有差異”

表3:

 

小麥產(chǎn)量小于20kg

小麥產(chǎn)量不小于20kg

合計(jì)

施用新化肥

 

不施用新化肥

 

合計(jì)

 

 

 

附:

 

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省襄樊四校高三期中考試文科數(shù)學(xué)試卷 題型:解答題

(本題12分)已知命題關(guān)于的方程有正根;命題不等式的解集為是真命題,是假命題,求實(shí)數(shù)的范圍。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年三峽高中高二下學(xué)期期末考試(理科)數(shù)學(xué)卷 題型:解答題

(本題12分)已知某種從太空帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個(gè)小組分別獨(dú)立開(kāi)展該種子的發(fā)芽實(shí)驗(yàn),每次實(shí)驗(yàn)種一粒種子,假定某次實(shí)驗(yàn)種子發(fā)芽則稱該次實(shí)驗(yàn)是成功的,如果種子沒(méi)有發(fā)芽,則稱該次實(shí)驗(yàn)是失敗的.

(1) 第一小組做了三次實(shí)驗(yàn),求實(shí)驗(yàn)成功的平均次數(shù);

(2) 第二小組連續(xù)進(jìn)行實(shí)驗(yàn),求實(shí)驗(yàn)首次成功時(shí)所需的實(shí)驗(yàn)次數(shù)的期望;

(3)兩個(gè)小組分別進(jìn)行2次試驗(yàn),求至少有2次實(shí)驗(yàn)成功的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年廣東省佛山市高二上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題

 

(本題12分)

    已知直線

(1)若平行,求的值。

  (2)若垂直,求的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省2009-2010學(xué)年度第二學(xué)期期末考試高二數(shù)學(xué)(文科)試題 題型:解答題

(本題12分)已知關(guān)于的不等式,其中.

(Ⅰ)當(dāng)變化時(shí),試求不等式的解集 ;

(Ⅱ)對(duì)于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若能,求出使得集合中元素個(gè)數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案