【題目】已知函數(shù)f(x)=(xR),g(x)=2a-1
(1)求函數(shù)f(x)的單調區(qū)間與極值.
(2)若f(x)≥g(x)對恒成立,求實數(shù)a的取值范圍.
【答案】(1) 函數(shù)f(x)的單調增區(qū)間為,單調減區(qū)間為.
f(x)的極大值為6,極小值-26;(2)
【解析】試題分析:(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,即可得到函數(shù)f(x)的單調區(qū)間與極值;(2)根據(jù)函數(shù)的單調性求出端點值和極值,從而求出f(x)的最小值,得到關于a的不等式,求出a的范圍即可.
試題解析:
(1)令,解得或,
令,解得:.
故函數(shù)的單調增區(qū)間為,單調減區(qū)間為.
f(x)的極大值為f(-1)=6,極小值f(3)=-26
(2)由(1)知在上單調遞增,在上單調遞減,在上單調遞增,
又,,,
∴,
∵對恒成立,
∴,即,∴
科目:高中數(shù)學 來源: 題型:
【題目】已知 ,其中向量 (x∈R),
(1)求函數(shù)y=f(x)的單調遞增區(qū)間;
(2)在△ABC中,角A、B、C的對邊分別為a、b、c,已知f (A)=2,a= ,b= ,求邊長c的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,底面為正方形, 底面, 為棱的中點.
(1)證明: ;
(2)求直線與平面所成角的正弦值;
(3)若為中點,棱上是否存在一點,使得,若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1的對角線AC1上任取一點P,以A為球心,AP為半徑作一個球.設AP=x,記該球面與正方體表面的交線的長度和為f(x),則函數(shù)f(x)的圖象最有可能的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某學校高三年級共名男生中隨機抽取名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于和之間,將測量結果按如下方式分成八組,第一組;第二組,,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,若第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構成等差數(shù)列.
()估計這所學校高三年級全體男生身高以上(含)的人數(shù).
()求第六組、第七組的頻率并補充完整頻率分布直方圖.(鉛筆作圖并用中性筆描黑).
()若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為、,求滿足的事件概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校有兩個參加國際中學生交流活動的代表名額,為此該學校高中部推薦2男1女三名候選人,初中部也推薦了1男2女三名候選人。若從6名學生中人選2人做代表。
求:(1)選出的2名同學來自不同年相級部且性別同的概率;
(2)選出的2名同學都來自高中部或都來自初中部的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知從橢圓的一個焦點看兩短軸端點所成視角為,且橢圓經過.
(1)求橢圓的方程;
(2)是否存在實數(shù),使直線與橢圓有兩個不同交點,且(為坐標原點),若存在,求出的值.不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱中,底面是邊長為2的正方形, 分別為線段, 的中點.
(1)求證: ||平面;
(2)四棱柱的外接球的表面積為,求異面直線與所成的角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com