設(shè)a∈R,函數(shù)f(x)=(x2-ax-a)ex
(Ⅰ)若a=1,求曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程;
(Ⅱ)求函數(shù)f(x)在[-2,2]上的最小值.
(Ⅰ)f'(x)=(2x-a)ex+(x2-ax-a)ex=(x+2)(x-a)ex
當(dāng)a=1時(shí),f'(0)=-2,f(0)=-1,
所以曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程為y-(-1)=-2x,
即2x+y+1=0.
(Ⅱ)令f'(x)=0,解得x=-2或x=a.
①a≥2,則當(dāng)x∈(-2,2)時(shí),f'(x)<0,函數(shù)f(x)在(-2,2)上單調(diào)遞減,
所以,當(dāng)x=2時(shí),函數(shù)f(x)取得最小值,最小值為f(2)=(4-3a)e2
②-2<a<2,則當(dāng)x∈(-2,2)時(shí),
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:

所以,當(dāng)x=a時(shí),函數(shù)f(x)取得最小值,最小值為f(a)=-a•ea
③a≤-2,則當(dāng)x∈(-2,2)時(shí),f'(x)>0,函數(shù)f(x)在(-2,2)上單調(diào)遞增,
所以,當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值,最小值為f(-2)=(4+a)e-2
綜上,當(dāng)a≤-2時(shí),f(x)的最小值為(4+a)e-2;當(dāng)-2<a<2時(shí),f(x)的最小值為-a•ea;
當(dāng)a≥2時(shí),f(x)的最小值為(4-3a)e2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖為函數(shù)f(x)=
x
(0<x<1)的圖象,其在點(diǎn)M(t,f(t))處的切線(xiàn)為l,l與y軸和直線(xiàn)y=1分別交于點(diǎn)P、Q,點(diǎn)N(0,1),若△PQN的面積為b時(shí)的點(diǎn)M恰好有兩個(gè),則b的取值范圍為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=-x3+ax2-4,(a∈R)
(Ⅰ)若y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線(xiàn)的傾斜角為
π
4
,求a;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)是f′(x),在(Ⅰ)的條件下,若m,n∈[-1,1],求f(m)+f′(n)的最小值.
(Ⅲ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)當(dāng)a=
1
2
時(shí),判斷證明f(x)的單調(diào)性并求f(x)的最小值;
(2)若對(duì)任意x∈[1,+∞),f(x)>1恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是的f(x)的導(dǎo)函數(shù).
(Ⅰ)對(duì)滿(mǎn)足-1≤a≤1的一切a的值,都有g(shù)(x)<0,求實(shí)數(shù)x的取值范圍;
(Ⅱ)設(shè)a=-m2,當(dāng)實(shí)數(shù)m在什么范圍內(nèi)變化時(shí),函數(shù)y=f(x)的圖象與直線(xiàn)y=3只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

f(x)=
1
3
x3-4x+4
(1)求函數(shù)的極值
(2)求函數(shù)在區(qū)間(-3,4)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線(xiàn)y=kx+1與曲線(xiàn)y=lnx有公共點(diǎn),則實(shí)數(shù)k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商品每件成本5元,售價(jià)14元,每星期賣(mài)出75件.如果降低價(jià)格,銷(xiāo)售量可以增加,且每星期多賣(mài)出的商品件數(shù)m與商品單價(jià)的降低值x(單位:元,0≤x<9)的平方成正比,已知商品單價(jià)降低1元時(shí),一星期多賣(mài)出5件.
(1)將一星期的商品銷(xiāo)售利潤(rùn)y表示成x的函數(shù);
(2)如何定價(jià)才能使一個(gè)星期的商品銷(xiāo)售利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c,曲線(xiàn)y=f(x)在x=1處的切線(xiàn)為l:3x-y+1=0,當(dāng)x=
2
3
時(shí),y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案