分析 利用導(dǎo)數(shù)求函數(shù)的值域.
解答 解:函數(shù)f(x)=$\sqrt{4-2x}$+$\sqrt{x}$,其函數(shù)的定義域為{x|0≤x≤2}.
那么:f′(x)=-$\frac{1}{\sqrt{4-2x}}+\frac{1}{2\sqrt{x}}$
令f′(x)=0,解得:x=$\frac{2}{3}$,
∴當x∈(0,$\frac{2}{3}$)時,f′(x)>0,f(x)是單調(diào)增函數(shù).
當x∈($\frac{2}{3}$,2)時,f′(x)<0,f(x)是單調(diào)減函數(shù).
∴當x=$\frac{2}{3}$時,f(x)取得極大值,即最大值為$\sqrt{6}$.
當x=0時,f(x)=2,當x=2時,f(x)=$\sqrt{2}$.
所以得函數(shù)f(x)的值域為[$\sqrt{2}$,$\sqrt{6}$].
故答案為:[$\sqrt{2}$,$\sqrt{6}$].
點評 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ②③ | B. | ②④ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12π | B. | 4$\sqrt{3}π$ | C. | 12$\sqrt{3}π$ | D. | $\frac{4}{3}$$\sqrt{3}$π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com