【題目】某校在高二年級開設選修課,選課結束后,有6名同學要求改選歷史,現(xiàn)歷史選修課開有三個班,若每個班至多可再接收3名同學,那么不同的接收方案共有(

A.150B.360C.510D.512

【答案】C

【解析】

根據(jù)題意,分三種情況討論:①其中一個班接收1名,一個班接收2名,一個班接收3名;②三個班各接收兩名;③其中一個班不接收,另兩個班各接收3名,分別求出每類情況的分配方法的種數(shù),由分類計數(shù)原理計算可得答案.

依題意,分三種情況討論:

①其中一個班接收1名,一個班接收2名,一個班接收3名,分配方案共有種;

②三個班各接收兩名,分配方案共有種;

③其中一個班不接收,另兩個班各接收3名,分配方案共有.

因此,滿足題意的不同的分配方案有.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中醫(yī)藥研究所研制出一種新型抗癌藥物,服用后需要檢驗血液是否為陽性,現(xiàn)有份血液樣本每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗次;(2)混合檢驗,將其中份血液樣本分別取樣混合在一起檢驗,若結果為陰性,則這份的血液全為陰性,因而這份血液樣本只需檢驗一次就夠了;若檢驗結果為陽性,為了明確這份血液究竟哪份為陽性,就需要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次假設在接受檢驗的血液樣本中,每份樣本的檢驗結果總陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為

1)假設有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗的方式,求恰好經(jīng)過兩次檢驗就能把陽性樣本全部檢驗出來的概率.

2)現(xiàn)取其中的份血液樣本,記采用逐份檢驗的方式,樣本需要檢驗的次數(shù)為;采用混合檢驗的方式,樣本簡要檢驗的總次數(shù)為;

(。┤,試運用概率與統(tǒng)計的知識,求關于的函數(shù)關系,

(ⅱ)若,采用混合檢驗的方式需要檢驗的總次數(shù)的期望比逐份檢驗的總次數(shù)的期望少,求的最大值(,,,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,直線,點上一動點,過作直線,的中垂線,交于點,設點的軌跡為曲線Γ.

1)求曲線Γ的方程;

2)若過的直線與Γ交于兩點,線段的垂直平分線交軸于點,求的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),,其中.恒成立,則當取得最小值時,的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天然氣已經(jīng)進入了千家萬戶,某市政府為了對天然氣的使用進行科學管理,節(jié)約氣資源,計劃確定一個家庭年用量的標準.為此,對全市家庭日常用氣的情況進行抽樣調查,獲得了部分家庭某年的用氣量(單位:立方米).將統(tǒng)計結果繪制成下面的頻率分布直方圖(如圖所示).由于操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.若以各組區(qū)間中點值代表該組的取值,則估計全市家庭年均用氣量約為(

A.6.5立方米B.5立方米C.4.5立方米D.2.5立方米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系.

1)求曲線的極坐標方程;

2)射線與曲線,分別交于點(且點均異于原點),當時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列命題:

①函數(shù)上單調遞減,在上單調遞增;

②若函數(shù)上有兩個零點,則的取值范圍是;

③當時,函數(shù)的最大值為0

④函數(shù)上單調遞減;

上述命題正確的是_________(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,,,O為線段CD的中點,將沿BO折到 的位置,使得,E的中點.

1)求證:;

2)求直線AE與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,過點的直線l與拋物線交于A,B兩點,以AB為直徑作圓,記為,與拋物線C的準線始終相切.

1)求拋物線C的方程;

2)過圓心Mx軸垂線與拋物線相交于點N,求的取值范圍.

查看答案和解析>>

同步練習冊答案