【題目】一個(gè)圓錐底面半徑為,高為,
(1)求圓錐的表面積.
(2)求圓錐的內(nèi)接正四棱柱表面積的最大值.
【答案】(1);(2).
【解析】
(1)計(jì)算出圓錐的母線長(zhǎng),然后利用圓錐的表面積公式計(jì)算即可;
(2)設(shè)正四棱柱的底面對(duì)角線的一半為,根據(jù)軸截面上的兩個(gè)三角形相似,列出比例式求出四棱柱的高,根據(jù)正四棱柱的表面積公式得出其表面積的表達(dá)式,然后利用二次函數(shù)的基本性質(zhì)得出該正四棱柱表面積的最大值.
(1)由題意可知,圓錐的母線長(zhǎng)為,
所以,該圓錐的表面積為;
(2)如下圖所示,設(shè)正四棱柱的底面對(duì)角線的一半為,
,,即,解得,
正四棱柱的底面是一個(gè)正方形,其底邊長(zhǎng)為,底面積為,
所以,四棱柱的底面積為,
由二次函數(shù)的基本性質(zhì)可知,當(dāng)時(shí),
正四棱柱的表面積有最大值,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①存在實(shí)數(shù)x,使得sin x+cos x=2;
②函數(shù)y=cos是奇函數(shù);
③若角α,β是第一象限角,且α<β,則tan α<tan β;
④函數(shù)y=sin的圖象關(guān)于點(diǎn)(,0)成中心對(duì)稱.
⑤直線x=是函數(shù)y=sin圖象的一條對(duì)稱軸;
其中正確的命題是( ).
A.②④B.①③C.①④D.②⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生更多的了解“數(shù)學(xué)史”知識(shí),某中學(xué)高二年級(jí)舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽,為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見下表.請(qǐng)你根據(jù)頻率分布表解答下列問題:
序號(hào) | 分組(分?jǐn)?shù)) | 組中值 | 頻數(shù)(人數(shù)) | 頻率 |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合計(jì) | 50 | 1 |
(1)填充頻率分布表中的空格;
(2)規(guī)定成績(jī)不低于85分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在參加的800名學(xué)生中大概有多少名同學(xué)獲獎(jiǎng)?
(3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為保護(hù)環(huán)境,某單位采用新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品。已知該單位每月的處理量最多不超過300噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系式可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為300元。
(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
(2)要保證該單位每月不虧損,則每月處理量應(yīng)控制在什么范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)數(shù)函數(shù)g(x)=1ogax(a>0,a≠1)和指數(shù)函數(shù)f(x)=ax(a>0,a≠1)互為反函數(shù).已知函數(shù)f(x)=3x,其反函數(shù)為y=g(x).
(Ⅰ)若函數(shù)g(kx2+2x+1)的定義域?yàn)?/span>R,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定義在I上的函數(shù)F(x),如果滿足:對(duì)任意x∈I,總存在常數(shù)M>0,都有-M≤F(x)≤M成立,則稱函數(shù)F(x)是I上的有界函數(shù),其中M為函數(shù)F(x)的上界.若函數(shù)h(x)=,當(dāng)m≠0時(shí),探求函數(shù)h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃投資A、B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資量成正比例,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資量的算術(shù)平方根成正比例,其關(guān)系如圖2(注:利潤(rùn)與投資量的單位:萬(wàn)元).
(1)分別將A、B兩產(chǎn)品的利潤(rùn)表示為投資量的函數(shù)關(guān)系式;
(2)該公司已有10萬(wàn)元資金,并全部投入A、B兩種產(chǎn)品中,問:怎樣分配這10萬(wàn)元投資,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求的定義域;并證明是定義域上的奇函數(shù);
(2)判斷在定義域上的單調(diào)性(無(wú)需證明);
(3)求使不等式解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人輪流投籃,每人每次投一次籃,先投中者獲勝.投籃進(jìn)行到有人獲勝或每人都已投球3次時(shí)結(jié)束.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.現(xiàn)由甲先投.
(1)求甲獲勝的概率;
(2)求投籃結(jié)束時(shí)甲的投籃次數(shù)X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com