【題目】給出下列命題:
①存在實數(shù)x,使得sin x+cos x=2;
②函數(shù)y=cos是奇函數(shù);
③若角α,β是第一象限角,且α<β,則tan α<tan β;
④函數(shù)y=sin的圖象關(guān)于點(,0)成中心對稱.
⑤直線x=是函數(shù)y=sin圖象的一條對稱軸;
其中正確的命題是( ).
A.②④B.①③C.①④D.②⑤
【答案】D
【解析】
①,由的最大值為,即可判斷真假;②,函數(shù)y=cos是奇函數(shù),即可判斷真假;③,通過舉反例,即可判斷真假;④函數(shù)圖象的對稱中心,即可判斷真假;⑤當x=時,函數(shù)取得最小值,即可判斷真假.
①,由的最大值為,
因為,所以不存在實數(shù),使得sinx+cosx=2,所以該命題是假命題;
②,函數(shù)y=cos是奇函數(shù),所以該命題是真命題;
③,,是第一象限角且.例如:,但,即不成立,所以該命題是假命題;
④,令,所以,所以函數(shù)圖象的對稱中心
,所以函數(shù)y=sin的圖象關(guān)于點(,0)成中心對稱是假命題;
⑤,當x=時,函數(shù)取得最小值,所以直線x=是函數(shù)y=sin圖象的一條對稱軸,所以該命題是真命題.
故選:D
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)統(tǒng)計,目前微信用戶已達10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進入微商渠道,讓這個行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產(chǎn)業(yè)轉(zhuǎn)型升級,某品牌飲料公司對微商銷售情況進行中期調(diào)研,從某地區(qū)隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?
(2)從隨機抽取的6家微商中再任取2家舉行消費者回訪調(diào)查活動,求恰有1家是優(yōu)秀微商的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗,其次品率與日產(chǎn)量 (萬件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬件合格的產(chǎn)品以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).
(1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬元)表示為日產(chǎn)量 (萬件)的函數(shù);
(2)當日產(chǎn)量為多少時,可獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中為常數(shù))
(1)求的單調(diào)增區(qū)間;
(2)若時,的最大值為,求的值;
(3)求取最大值時的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是正方體的平面展開圖,在這個正方體中;
(1)BM與ED平行;(2)CN與BE是異面直線;(3)CN與BM所成角為60°;(4)CN與AF垂直. 以上四個命題中,正確命題的序號是( )
A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列四個命題:
①函數(shù)滿足:對任意有;
②函數(shù)均為奇函數(shù);
③若函數(shù)在上有意義,則的取值范圍是;
④設是關(guān)于的方程,(且)的兩根,則;
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,.
(1)求證:平面;
(2)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的最小正周期、單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com