12.將質(zhì)地均勻的硬幣連續(xù)拋擲2次,則2次都是正面向上的概率( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

分析 先列舉出基本事件,再找出2次都是正面向上的情況,由此能求出2次都是正面向上的概率.

解答 解:將質(zhì)地均勻的硬幣連續(xù)拋擲2次,
基本事件有:(正正),(正反),(反正),(反反),共4種情況,
2次都是正面向上的情況有1種,
∴2次都是正面向上的概率p=$\frac{1}{4}$.
故選:A.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意列舉法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.如圖,在救災現(xiàn)場,搜救人員從A點出發(fā)沿正北方向行進x米到達B處,探測到一個生命跡象,然后從B處沿南偏東75°行進30米到達C處,探測到另一個生命跡象,如果C處恰好在A處的北偏東60°方向上,那么x=10$\sqrt{6}$.米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知x>-2,則x+$\frac{1}{x+2}$的最小值為(  )
A.-$\frac{1}{2}$B.-1C.2D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=$\frac{\sqrt{2-x}}{{log}_{2}x}$的定義域為( 。
A.{x|0<x≤2}B.{x|0<x≤2且x≠1}C.{x|0<x<2}D.{x|0<x<2且x≠1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.直線l1:(m-1)x+y=4m-1與直線l2:2x-3y=5互相平行的充要條件是( 。
A.m=$\frac{2}{3}$B.m=$\frac{1}{3}$C.m=-$\frac{2}{3}$D.m=-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知圓O:x2+y2+6x-2y+6=0,若斜率存在且不等于0的直線l過點A(4,0)且被圓O截得的弦長為2$\sqrt{3}$,則直線l的方程為(  )
A.24x+7y-28=0B.7x+24y-28=0C.24x-7y-28=0D.7x-24y-28=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.甲乙兩人進行中國象棋比賽,甲贏的概率為0.5,下和的概率為0.2,則甲不輸?shù)母怕蕿?.7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.△ABC中,若$\overrightarrow{AD}$=2$\overrightarrow{DB}$,$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$,則λ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,若A=60°,b=4,此三角形面積S=2$\sqrt{3}$,則a的值是(  )
A.2$\sqrt{3}$B.3$\sqrt{3}$C.4$\sqrt{3}$D.5$\sqrt{3}$

查看答案和解析>>

同步練習冊答案