已知拋物線y2=4x的準(zhǔn)線與雙曲線交于A、B兩點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),若△FAB為直角三角形,則雙曲線的離心率是    
【答案】分析:先根據(jù)拋物線方程求得準(zhǔn)線方程,代入雙曲線方程求得y,根據(jù)雙曲線的對(duì)稱性可知△FAB為等腰直角三角形,進(jìn)而可求得A或B的縱坐標(biāo)為2,進(jìn)而求得a,利用a,b和c的關(guān)系求得c,則雙曲線的離心率可得.
解答:解:依題意知拋物線的準(zhǔn)線x=-1.代入雙曲線方程得
y=±
不妨設(shè)A(-1,),
∵△FAB是等腰直角三角形,
=2,解得:a=
∴c2=a2+b2=+1=
∴e=
故答案為:
點(diǎn)評(píng):本題主要考查了雙曲線的簡單性質(zhì).解題的關(guān)鍵是通過雙曲線的對(duì)稱性質(zhì)判斷出△FAB為等腰直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F,其準(zhǔn)線與x軸交于點(diǎn)M,過M作斜率為k的直線與拋物線交于A、B兩點(diǎn),弦AB的中點(diǎn)為P,AB的垂直平分線與x軸交于點(diǎn)E(x0,0).
(1)求k的取值范圍;
(2)求證:x0>3;
(3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線
y
2
 
=4x
的焦點(diǎn)為F,過點(diǎn)A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,焦點(diǎn)為F,頂點(diǎn)為O,點(diǎn)P(m,n)在拋物線上移動(dòng),Q是OP的中點(diǎn),M是FQ的中點(diǎn).
(1)求點(diǎn)M的軌跡方程.
(2)求
nm+3
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x與直線2x+y-4=0相交于A、B兩點(diǎn),拋物線的焦點(diǎn)為F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,其焦點(diǎn)為F,P是拋物線上一點(diǎn),定點(diǎn)A(6,3),則|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步練習(xí)冊(cè)答案