【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為,其中為參數(shù),在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,點P的極坐標為,直線l的極坐標方程為.
(1)求曲線C的普通方程與直線l的直角坐標方程;
(2)若Q是曲線C上的動點,M為線段PQ的中點,求點M到直線l的距離的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組測量電視塔AE的高度H(單位m),如示意圖,垂直放置的標桿BC高度h=4m,仰角∠ABE=α,∠ADE=β
(1)該小組已經(jīng)測得一組α、β的值,tanα=1.24,tanβ=1.20,,請據(jù)此算出H的值
(2)該小組分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)適當調(diào)整標桿到電視塔的距離d(單位m),使α與β之差較大,可以提高測量精確度,若電視塔實際高度為125m,問d為多少時,α-β最大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線上的動點到點的距離與到直線的距離相等.
(1)求曲線的軌跡方程;
(2)過點分別作射線、交曲線于不同的兩點、,且以為直徑的圓經(jīng)過點.試探究直線是否過定點?如果是,請求出該定點;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列的前項和為,且,.數(shù)列的前項和為,滿足.
(1)求數(shù)列的通項公式;
(2)寫出一個正整數(shù),使得是數(shù)列的項;
(3)設數(shù)列的通項公式為,問:是否存在正整數(shù)和,使得,,成等差數(shù)列?若存在,請求出所有符合條件的有序整數(shù)對;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,橢圓的短半軸長等于圓的半徑,且過右焦點的直線與圓相切于點.
(1)求橢圓的方程;
(2)若動直線與圓相切,且與相交于兩點,求點到弦的垂直平分線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在上的函數(shù),若同時滿足:①存在閉區(qū)間,使得任取,都有(是常數(shù));②對于內(nèi)任意,當時總有,稱為“平底型”函數(shù).
(1)判斷,是否為“平底型”函數(shù)?說明理由;
(2)設是(1)中的“平底型”函數(shù),若對一切恒成立,求實數(shù)的范圍;
(3)若,是“平底型”函數(shù),求和的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,是一塊邊長為7米的正方形鐵皮,其中是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮,其中P是上一點.設,長方形的面積為S平方米.
(1)求S關于的函數(shù)解析式;
(2)設,求S關于t的表達式以及S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,兩條相交線段、的四個端點都在橢圓上,其中直線的方程為,直線的方程為.
(1)若,,求的值;
(2)探究:是否存在常數(shù),當變化時,恒有?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com