【題目】2017年1月1日,作為貴陽市打造“千園之城”27個(gè)示范性公園之一的泉湖公園正式開園.元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項(xiàng)目向全體市民開放.現(xiàn)從到公園游覽的市民中隨機(jī)抽取了60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:

(1)根據(jù)條件完成下列

列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?

愿意

不愿意

總計(jì)

男生

女生

總計(jì)

(2)水上挑戰(zhàn)項(xiàng)目共有兩關(guān),主辦方規(guī)定:挑戰(zhàn)過程依次進(jìn)行,每一關(guān)都有兩次機(jī)會(huì)挑戰(zhàn),通過第一關(guān)后才有資格參與第二關(guān)的挑戰(zhàn),若甲參加每一關(guān)的每一次挑戰(zhàn)通過的概率均為

,記甲通過的關(guān)數(shù)為

,求

的分布列和數(shù)學(xué)期望.

參考公式與數(shù)據(jù):

0.1

0.05

0.025

0.01

2.706

3.841

5.024

6.635

.

【答案】(1)見解析;

(2)

的分布列為:

0

1

2

.

【解析】試題分析:(1)根據(jù)比例確定人數(shù),填入對(duì)應(yīng)表格,再根據(jù)卡方公式計(jì)算

,最后對(duì)照數(shù)據(jù)判斷結(jié)論不成立,(2)先確定隨機(jī)變量可能取法0,1,2,再分別計(jì)算對(duì)應(yīng)概率(可利用對(duì)立事件概率求法求較復(fù)雜事件的概率),列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望.

試題解析:

(1)

愿意

不愿意

總計(jì)

男生

15

45

60

女生

20

20

40

總計(jì)

35

65

100

,

則不能認(rèn)為在犯錯(cuò)誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān).

(2)記男生甲第

次通過第一關(guān)為

,第

次通過第二關(guān)為

,

的可能取值為0,1,2.

,

,

的分布列為:

0

1

2

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2014福建,文22】已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.

(1)的值及函數(shù)的極值;

(2)證明:當(dāng)時(shí),

(3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn)且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上的點(diǎn),直線為坐標(biāo)原點(diǎn))的斜率之積為.若動(dòng)點(diǎn)滿足,試探究是否存在兩個(gè)定點(diǎn)使得為定值?若存在,的坐標(biāo);若不存在請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐,側(cè)面是邊長(zhǎng)為的正三角形,且與底面垂直,底面的菱形, 的中點(diǎn).

(1)求證: ;

(2)求點(diǎn)到平面 的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分12分甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次記錄如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

1用莖葉圖表示這兩組數(shù)據(jù);

2現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個(gè)分析,你認(rèn)為選派哪位學(xué)生參加合適?請(qǐng)說明理由

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時(shí),處取得極值,求函數(shù)的單調(diào)區(qū)間;

(2)若時(shí),函數(shù)有兩個(gè)不同的零點(diǎn),

①求的取值范圍;

②求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

,曲線

過點(diǎn)

,且在點(diǎn)

處的切線方程為

.

(1)求

的值;

(2)證明:當(dāng)

時(shí),

;

(3)若當(dāng)

時(shí),

恒成立,求實(shí)數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為.

(Ⅰ)求該橢圓的方程;

(Ⅱ)若直線與橢圓交于, 兩點(diǎn)且,是否存在以原點(diǎn)為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請(qǐng)說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案