【題目】2017年1月1日,作為貴陽市打造“千園之城”27個(gè)示范性公園之一的泉湖公園正式開園.元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項(xiàng)目向全體市民開放.現(xiàn)從到公園游覽的市民中隨機(jī)抽取了60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:
(1)根據(jù)條件完成下列
列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?
愿意 | 不愿意 | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) |
(2)水上挑戰(zhàn)項(xiàng)目共有兩關(guān),主辦方規(guī)定:挑戰(zhàn)過程依次進(jìn)行,每一關(guān)都有兩次機(jī)會(huì)挑戰(zhàn),通過第一關(guān)后才有資格參與第二關(guān)的挑戰(zhàn),若甲參加每一關(guān)的每一次挑戰(zhàn)通過的概率均為
,記甲通過的關(guān)數(shù)為
,求
的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
0.1 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
.
【答案】(1)見解析;
(2)
的分布列為:
0 | 1 | 2 | |
.
【解析】試題分析:(1)根據(jù)比例確定人數(shù),填入對(duì)應(yīng)表格,再根據(jù)卡方公式計(jì)算
,最后對(duì)照數(shù)據(jù)判斷結(jié)論不成立,(2)先確定隨機(jī)變量可能取法0,1,2,再分別計(jì)算對(duì)應(yīng)概率(可利用對(duì)立事件概率求法求較復(fù)雜事件的概率),列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望.
試題解析:
(1)
愿意 | 不愿意 | 總計(jì) | |
男生 | 15 | 45 | 60 |
女生 | 20 | 20 | 40 |
總計(jì) | 35 | 65 | 100 |
,
則不能認(rèn)為在犯錯(cuò)誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān).
(2)記男生甲第
次通過第一關(guān)為
,第
次通過第二關(guān)為
,
的可能取值為0,1,2.
,
,
∴
,
的分布列為:
0 | 1 | 2 | |
∴
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2014福建,文22】已知函數(shù)(為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時(shí),
(3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上的點(diǎn),直線與(為坐標(biāo)原點(diǎn))的斜率之積為.若動(dòng)點(diǎn)滿足,試探究是否存在兩個(gè)定點(diǎn),使得為定值?若存在,求的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐,側(cè)面是邊長(zhǎng)為的正三角形,且與底面垂直,底面是的菱形, 為的中點(diǎn).
(1)求證: ;
(2)求點(diǎn)到平面 的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個(gè))分析,你認(rèn)為選派哪位學(xué)生參加合適?請(qǐng)說明理由
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),在處取得極值,求函數(shù)的單調(diào)區(qū)間;
(2)若時(shí),函數(shù)有兩個(gè)不同的零點(diǎn),
①求的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,曲線
過點(diǎn)
,且在點(diǎn)
處的切線方程為
.
(1)求
的值;
(2)證明:當(dāng)
時(shí),
;
(3)若當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)證明:當(dāng)時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若直線與橢圓交于, 兩點(diǎn)且,是否存在以原點(diǎn)為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請(qǐng)說明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com