精英家教網 > 高中數學 > 題目詳情

(本小題共l2分)

過點C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點、,過點C的直線l與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q
(I)當直線l過橢圓右焦點時,求線段CD的長;
(Ⅱ)當點P異于點B時,求證:為定值.

本小題主要考查直線、橢圓的標準方程及基本性質等基本知識,考查平面解析幾何的思想方法及推理運算能力.
解:(Ⅰ)由已知得,解得,所以橢圓方程為
橢圓的右焦點為,此時直線的方程為 ,代入橢圓方程得
,解得,代入直線的方程得 ,所以,

(Ⅱ)當直線軸垂直時與題意不符.
設直線的方程為.代入橢圓方程得
解得,代入直線的方程得,
所以D點的坐標為
又直線AC的方程為,又直線BD的方程為,聯立得
因此,又
所以
為定值.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本小題共l2分)

過點C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點,過點C的直線l與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q

(I)當直線l過橢圓右焦點時,求線段CD的長;

(Ⅱ)當點P異于點B時,求證:為定值.

查看答案和解析>>

科目:高中數學 來源:2011年四川省招生統(tǒng)一考試理科數學 題型:解答題

(本小題共l2分)

    橢圓有兩頂點A(-1,0)、B(1,0),過其焦點F(0,1)的直線l與橢圓交于C、D兩點,并與x軸交于點P.直線AC與直線BD交于點Q.

    (I)當|CD | = 時,求直線l的方程;

    (II)當點P異于A、B兩點時,求證:為定值.

 [來源:ZXXK][來源:學*科*網Z*X*X*K]

 

 

查看答案和解析>>

科目:高中數學 來源:2011年高考試題數學文(四川卷)解析版 題型:解答題

 (本小題共l2分)

過點C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點、,過點C的直線l與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q

(I)當直線l過橢圓右焦點時,求線段CD的長;

(Ⅱ)當點P異于點B時,求證:為定值.

 

 

查看答案和解析>>

科目:高中數學 來源:2011年高考試題數學理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    橢圓有兩頂點A(-1,0)、B(1,0),過其焦點F(0,1)的直線l與橢圓交于C、D兩點,并與x軸交于點P.直線AC與直線BD交于點Q.

    (I)當|CD | = 時,求直線l的方程;

    (II)當點P異于A、B兩點時,求證: 為定值。

 

 

 

 

查看答案和解析>>

同步練習冊答案