(本小題滿分12分)已知二次函數(shù)的圖象過點(0,—3),且的解集(1,3)。
(1)求的解析式;
(2)若當(dāng)時,恒有求實數(shù)t的取值范圍。

(1);(2)。

解析試題分析:(1) 由題意可設(shè)二次函數(shù)    ……………2分
當(dāng),∴  ∴      ……………4分
∴             ……………6分
(2) 當(dāng)時,恒有成立,可知
恒成立              ……………8分

                  ……………10分
   故實數(shù)的取值范圍為     ……………12分
考點:二次函數(shù)的性質(zhì);二次不等式的解法;基本不等式。
點評:解決恒成立問題常用變量分離法,變量分離法主要通過兩個基本思想解決恒成立問題, 思路1:上恒成立;思路2: 上恒成立。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知某公司生產(chǎn)某品牌服裝的年固定成本為10萬元,每生產(chǎn)一千件,需要另投入2.7萬元.設(shè)該公司年內(nèi)共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(I)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)關(guān)系式;
(Ⅱ)年生產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
設(shè)函數(shù)的定義域為集合,集合
請你寫出一個一元二次不等式,使它的解集為,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)設(shè),寫出數(shù)列的前5項;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為定義在上的奇函數(shù),當(dāng)時, 
(1)證明函數(shù)是增函數(shù)(2)求在(-1,1)上的解析式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)定義在實數(shù)R上的函數(shù)y= f(x)是偶函數(shù),當(dāng)x≥0時,.
(Ⅰ)求f(x)在R上的表達(dá)式;
(Ⅱ)求y=f(x)的最大值,并寫出f(x)在R上的單調(diào)區(qū)間(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)經(jīng)過點.
(1)求的值;(2)求在[0,1]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)建造一個容積為18立方米,深為2米的長方體有蓋水池。如果池底和池壁每平方米的造價分別是200元和150元,那么如何建造,池的造價最低,為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費用為560+48x(單位:元).為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?
(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=

查看答案和解析>>

同步練習(xí)冊答案