【題目】已知函數(shù)f(x)=ax3+x2(a∈R)在x=﹣處取得極值.

(1)確定a的值;

(2)討論函數(shù)g(x)=f(x)ex的單調(diào)性.

【答案】(1) a=;(2) 在(﹣∞,﹣4)和(﹣1,0)內(nèi)為減函數(shù),在(﹣4,﹣1)和(0,+∞)為增函數(shù).

【解析】(1)對f(x)求導(dǎo)得f′(x)=3ax2+2x.

∵f(x)=ax3+x2(a∈R)在x=﹣處取得極值,∴f′(﹣)=0,

∴3a+2(﹣)=0,∴a=

(2)由(1)得g(x)=(x3+x2)ex,

∴g′(x)=(x2+2x)ex+(x3+x2)ex=x(x+1)(x+4)ex,

g′(x)=0,解得x=0,x=﹣1x=﹣4,

x<﹣4時,g′(x)<0,故g(x)為減函數(shù);

當﹣4<x<﹣1時,g′(x)>0,故g(x)為增函數(shù);

當﹣1<x<0時,g′(x)<0,故g(x)為減函數(shù);

x>0時,g′(x)>0,故g(x)為增函數(shù);

綜上知g(x)在(﹣∞,﹣4)和(﹣1,0)內(nèi)為減函數(shù),在(﹣4,﹣1)和(0,+∞)為增函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1) 若x>1,求x+的最小值;

(2) 若x>0,y>0,且2x+8y-xy=0,求xy的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為梯形, , 平面, , , , 中點.

(1)求證:平面平面;

(2)線段上是否存在一點,使平面?若有,請找出具體位置,并進行證明:若無,請分析說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進行解答,選題情況統(tǒng)計如下表:(單位:人)

立體幾何題

代數(shù)題

總計

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計

30

20

50

(1)能否有97.5%以上的把握認為“喜歡空間想象”與“性別”有關(guān)?

(2)經(jīng)統(tǒng)計得,選擇做立體幾何題的學(xué)生正答率為,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行研究,記抽取的兩人中答對的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】做一個無蓋的圓柱形水桶,若要使其體積是,且用料最省,則圓柱的底面半徑為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】輪船由甲地逆水勻速行駛至乙地,甲、乙兩地相距s(km),水流速度為p(km/h),輪船在靜水中的最大速度為q(km/h)(p,q為常數(shù),且q>p),已知輪船每小時的燃料費用與輪船在靜水中的速度v(km/h)成正比,比例系數(shù)為常數(shù)k.

(1)將全程燃料費用y(元)表示為靜水中速度v(km/h)的函數(shù);

(2)若s=100,p=10,q=110,k=2,為了使全程的燃料費用最少,輪船的實際行駛速度應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)f(x)為增函數(shù),且f(f(x))4x9g(x)mxm3(mR).

(1)x[-1,2]時,若不等式g(x)0恒成立,求m的取值范圍;

(2)如果函數(shù)F(x)f(x)g(x)為偶函數(shù),求m的值;

(3)當函數(shù)f(x)g(x)滿足f(g(x))g(f(x))時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了參加師大附中第30界田徑運動會的開幕式,高三年級某6個班聯(lián)合到集市購買了6根竹竿,作為班旗的旗桿之用,它們的長度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).

)若從中隨機抽取兩根竹竿,求長度之差不超過0.5米的概率;

)若長度不小于4米的竹竿價格為每根10元,長度小于4米的竹竿價格為每根元.從這6根竹竿中隨機抽取兩根,若期望這兩根竹竿的價格之和為18元,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班從6名班干部中其中男生4人,女生2人,任選3人參加學(xué)校的義務(wù)勞動.

1設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;

2求男生甲或女生乙被選中的概率.

查看答案和解析>>

同步練習(xí)冊答案