精英家教網 > 高中數學 > 題目詳情
已知雙曲線
x2
2
-
y2
2
=1
的準線過橢圓
x2
4
+
y2
b2
=1
的焦點,則直線y=kx+2與橢圓至多有一個交點的充要條件是(  )
A.K∈[-
1
2
,
1
2
]
B.K∈[-∞,-
1
2
]∪[
1
2
,+∞]
C.K∈[-
2
2
2
2
]
D.K∈[-∞,-
2
2
]∪[
2
2
,+∞]
根據題意,易得準線方程是x=±
a2
b
=±1
所以c2=a2-b2=4-b2=1即b2=3
所以方程是
x2
4
+
y2
3
=1

聯立y=kx+2可得3x2+(4k2+16k)x+4=0
由△≤0解得K∈[-
1
2
,
1
2
]
故選A
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別是F1、F2,其一條漸近線方程為y=x,點P(
3
,y0)
在雙曲線上、則
PF1
PF2
=( 。
A、-12B、-2C、0D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別為F1,F2,其一條漸近線方程為y=x,點P(
3
,y0)
在該雙曲線上,則
PF1
PF2
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x22
-y2=1
,過點P(0,1)作斜率k<0的直線l與雙曲線恰有一個交點.
(1)求直線l的方程;
(2)若點M在直線l與x≥0,y≥0所圍成的三角形的三條邊上及三角形內運動,求z=-x+y的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
2
-
y2
2
=1
的準線過橢圓
x2
4
+
y2
b2
=1
的焦點,且直線y=kx+2與橢圓在第一象限至多只有一個交點,則實數k的取值范圍為
(-∞,1]∪[-
1
2
,+∞)
(-∞,1]∪[-
1
2
,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•嘉定區(qū)三模)已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別為F1、F2,其一條漸近線方程為y=x,點P(
3
,y0)
在該雙曲線上,則
PF1
PF2
的夾角大小為(  )

查看答案和解析>>

同步練習冊答案