設(shè)數(shù)列{an} 的前n項和為Sn,滿足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差數(shù)列.
(1)求a1,a2,a3的值;
(2)求證:數(shù)列{an+2n}是等比數(shù)列;
(3)證明:對一切正整數(shù)n,有++…+

(1),,;(2)詳見解析;(3)詳見解析.

解析試題分析:(1)由,成等差數(shù)列可得一等式:.為了求出,,需再列兩個方程.在題設(shè)中,令,,便又得兩個方程,這樣解方程組即可.
(2)要證為等比數(shù)列,需證是一個常數(shù).為此,需找到.題設(shè)中是這樣一個關(guān)系式,顯然應(yīng)消去只留,這就要用.
中的換成,兩式相減得:,所以.注意這里的大于等于2,所以還需要考慮的情況.
(3)涉及數(shù)列的和的不等式的證明,一般有以下兩種方法,一是先求和后放縮,二是先放縮后求和.
在本題中,應(yīng)首先求出通項公式.由(2)可得.對這樣一個數(shù)列顯然不可能先求和,那么就先放縮.因為,所以,然后采用迭乘或迭代的方法,便可得,右邊是一個等比數(shù)列,便可以求和了.
試題解析:(1)因為,成等差數(shù)列,所以……………………①
當(dāng)時,,………………………………………………………②
當(dāng)時,,………………………………………………③
所以聯(lián)立①②③解得,,,
(2)由,得,
兩式相減得,所以
因為,所以是首項為3,公比為3的等比數(shù)列.
(3)由(2)得,,即.因為,
所以,
所以當(dāng)n≥2時,,,,…….,,兩邊同時相乘得:.
所以
考點(diǎn):1、遞推數(shù)列;2、不等式的證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)(其中),區(qū)間.
(1)求區(qū)間的長度(注:區(qū)間的長度定義為);
(2)把區(qū)間的長度記作數(shù)列,令,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項和Sn=2n2+2n,數(shù)列{bn}的前n項和Tn=2-bn.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設(shè)cn·bn,證明:當(dāng)且僅當(dāng)n≥3時,cn+1<cn..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和為,
(1)求證:數(shù)列是等比數(shù)列;
(2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和滿足,又,.
(1)求實數(shù)k的值;
(2)問數(shù)列是等比數(shù)列嗎?若是,給出證明;若不是,說明理由;
(3)求出數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列滿足.
(1)若是等差數(shù)列,求證:為等差數(shù)列;
(2)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)不等式組所表示的平面區(qū)域為Dn,記Dn內(nèi) 的整點(diǎn)個數(shù)為an(n∈N*)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn)).
(1) 求證:數(shù)列{an}的通項公式是an=3n(n∈N*).
(2) 記數(shù)列{an}的前n項和為Sn,且Tn.若對于一切的正整數(shù)n,總有Tn≤m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,其中N*.
(Ⅰ)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項公式
(Ⅱ)設(shè),數(shù)列的前項和為,是否存在正整數(shù),使得對于N*恒成立,若存在,求出的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若數(shù)列的前項和為,對任意正整數(shù)都有,記
(1)求,的值;
(2)求數(shù)列的通項公式;
(3)若求證:對任意

查看答案和解析>>

同步練習(xí)冊答案